山西省臨汾平陽2023-2024學年中考數(shù)學仿真試卷含解析_第1頁
山西省臨汾平陽2023-2024學年中考數(shù)學仿真試卷含解析_第2頁
山西省臨汾平陽2023-2024學年中考數(shù)學仿真試卷含解析_第3頁
山西省臨汾平陽2023-2024學年中考數(shù)學仿真試卷含解析_第4頁
山西省臨汾平陽2023-2024學年中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省臨汾平陽2023-2024學年中考數(shù)學仿真試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.實數(shù)的相反數(shù)是()A.- B. C. D.2.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°3.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°4.不等式組1-x≤0,3x-6<0A. B. C. D.5.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.6.在同一直角坐標系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.17.不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.8.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.9.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.10.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)11.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.12.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.24二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)值y與自變量x的部分對應值如下表:x…-5-4-3-2-1…y…3-2-5-6-5…則關于x的一元二次方程ax2+bx+c=-2的根是______.14.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.15.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.16.不等式1﹣2x<6的負整數(shù)解是___________.17.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結果保留π)18.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解方程20.(6分)在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.21.(6分)如圖,已知點、在直線上,且,于點,且,以為直徑在的左側作半圓,于,且.若半圓上有一點,則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當半圓與的邊相切時,求平移距離.22.(8分)某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.23.(8分)如圖,在四邊形中,為的中點,于點,,,,求的度數(shù).24.(10分)如圖,直線y=x+2與雙曲線y=相交于點A(m,3),與x軸交于點C.求雙曲線的解析式;點P在x軸上,如果△ACP的面積為3,求點P的坐標.25.(10分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;將線段繞點逆時針旋轉90°得到線段.畫出線段;以為頂點的四邊形的面積是個平方單位.26.(12分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經(jīng)過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.27.(12分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:m=;請補全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為;已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)相反數(shù)的定義即可判斷.【詳解】實數(shù)的相反數(shù)是-故選A.【點睛】此題主要考查相反數(shù)的定義,解題的關鍵是熟知相反數(shù)的定義即可求解.2、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質的應用,能正確作出輔助線是解此題的關鍵.3、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內接四邊形的性質得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數(shù)軸上表示不等式的解集是:,故選D.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組.5、A【解析】

取CB的中點G,連接MG,根據(jù)等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.6、D【解析】

本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質.【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.7、C【解析】

分別求出每一個不等式的解集,根據(jù)口訣:大小小大中間找確定不等式組的解集,在數(shù)軸上表示時由包括該數(shù)用實心點、不包括該數(shù)用空心點判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.8、A【解析】

由題意,因為與反比例函數(shù)都是關于直線對稱,推出A與B關于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關于直線對稱,與B關于直線對稱,,,點故選:A.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質,圓的對稱性及軸對稱的性質.解題的關鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關于直線對稱.9、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.10、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關鍵.11、B【解析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.12、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)的混合運算的計算方法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函數(shù)值都是﹣5,相等,∴二次函數(shù)的對稱軸為直線x=﹣1.∵x=﹣4時,y=﹣1,∴x=2時,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案為x1=﹣4,x1=2.點睛:本題考查了二次函數(shù)的性質,主要利用了二次函數(shù)的對稱性,讀懂圖表信息,求出對稱軸解析式是解題的關鍵.14、1【解析】

根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.15、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質,反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質.不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關于原點對稱.由關于原點對稱的坐標點性質,直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數(shù),即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、﹣2,﹣1【解析】試題分析:根據(jù)不等式的性質求出不等式的解集,找出不等式的整數(shù)解即可.解:1﹣2x<6,移項得:﹣2x<6﹣1,合并同類項得:﹣2x<5,不等式的兩邊都除以﹣2得:x>﹣,∴不等式的負整數(shù)解是﹣2,﹣1,故答案為:﹣2,﹣1.點評:本題主要考查對解一元一次不等式,一元一次不等式的整數(shù)解,不等式的性質等知識點的理解和掌握,能根據(jù)不等式的性質求出不等式的解集是解此題的關鍵.17、18π【解析】

根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.18、2【解析】

將PA+PB轉化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉化PA+PC的值,從而找出其最小值求解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、x=-1.【解析】

解:方程兩邊同乘x-2,得2x=x-2+1解這個方程,得x=-1檢驗:x=-1時,x-2≠0∴原方程的解是x=-1首先去掉分母,觀察可得最簡公分母是(x﹣2),方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解,然后解一元一次方程,最后檢驗即可求解20、(1)見解析;(2).【解析】

(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為.【點睛】本題考查了折疊的性質和矩形性質、勾股定理等知識點,能熟記折疊的性質是解答此題的關鍵.21、(1);(2)①;②【解析】

(1)由圖可知當點F與點D重合時,AF最大,根據(jù)勾股定理即可求出此時AF的長;(2)①連接EG、EH.根據(jù)的長為π可求得∠GEH=60°,可得△GEH是等邊三角形,根據(jù)等邊三角形的三個角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根據(jù)平角的定義即可求出∠A'GO的度數(shù);②分C'A'與半圓相切和B'A'與半圓相切兩種情況進行討論,利用切線的性質、勾股定理、切斜長定理等知識進行解答即可得出答案.【詳解】解:(1)當點F與點D重合時,AF最大,AF最大=AD==,故答案為:;(2)①連接、.∵,∴.∵,∴是等邊三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②當切半圓于時,連接,則.∵,∴切半圓于點,∴.∵,∴,∴平移距離為.當切半圓于時,連接并延長于點,∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【點睛】本題主要考查了弧長公式、勾股定理、切線的性質,作出過切點的半徑構造出直角三角形是解決此題的關鍵.22、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】

試題分析:(1)由在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”元,“10”元,“20”元和“30”元的字樣,規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以再箱子里先后摸出兩個球(第一次摸出后不放回).即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;解法二(列表法):

0

10

20

30

0

﹣﹣

10

20

30

10

10

﹣﹣

30

40

20

20

30

﹣﹣

50

30

30

40

50

﹣﹣

從上表可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;考點:列表法與樹狀圖法.【詳解】請在此輸入詳解!23、【解析】

連接,根據(jù)線段垂直平分線的性質得到,根據(jù)等腰三角形的性質、三角形內角和定理計算即可.【詳解】連接,∵為的中點,于點,∴,∴,∵,∴,∵,∴,∵,∴,∴,∴.【點睛】本題考查的是線段垂直平分線的性質、等腰三角形的性質以及三角形內角和定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.24、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A點坐標代入直線解析式可求得m的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(t,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于t的方程,則可求得P點坐標.詳解:(1)把A點坐標代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點P在x軸上,∴可設P點坐標為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點坐標為(﹣6,0)或(﹣2,0).點睛:本題主要考查函數(shù)圖象的交點,掌握函數(shù)圖象的交點坐標滿足每個函數(shù)解析式是解題的關鍵.25、(1)畫圖見解析;(2)畫圖見解析;(3)20【解析】【分析】(1)結合網(wǎng)格特點,連接OA并延長至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結合網(wǎng)格特點根據(jù)旋轉作圖的方法找到A2點,連接A2B1即可得;(3)根據(jù)網(wǎng)格特點可知四邊形AA1B1A2是正方形,求出邊長即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結合網(wǎng)格特點易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點睛】本題考查了作圖-位似變換,旋轉變換,能根據(jù)位似比、旋轉方向和旋轉角得到關鍵點的對應點是作圖的關鍵.26、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對應關系,可得A,C點坐標,根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質,可得,根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數(shù),根據(jù)二次函數(shù)的性質,可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結論.【詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論