2025屆云南省昭通市永善一中高二上數(shù)學期末復習檢測模擬試題含解析_第1頁
2025屆云南省昭通市永善一中高二上數(shù)學期末復習檢測模擬試題含解析_第2頁
2025屆云南省昭通市永善一中高二上數(shù)學期末復習檢測模擬試題含解析_第3頁
2025屆云南省昭通市永善一中高二上數(shù)學期末復習檢測模擬試題含解析_第4頁
2025屆云南省昭通市永善一中高二上數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省昭通市永善一中高二上數(shù)學期末復習檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若“”是“”的充分不必要條件,則實數(shù)a的取值范圍為A. B.或C. D.2.設,隨機變量X的分布列如下表所示,隨機變量Y滿足,則當a在上增大時,關于的表述下列正確的是()X013PabA增大 B.減小C.先增大后減小 D.先減小后增大3.已知三角形三個頂點為、、,則邊上的高所在直線的方程為()A. B.C. D.4.方程有兩個不同的解,則實數(shù)k的取值范圍為()A. B.C. D.5.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.6.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.7.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.8.已知,則點關于平面的對稱點的坐標是()A. B.C. D.9.等差數(shù)列中,若,,則等于()A. B.C. D.10.曲線在點處的切線方程是()A. B.C. D.11.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.412.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的值是_________.14.幾位大學生響應國家創(chuàng)業(yè)號召,開發(fā)了一款面向中學生的應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”活動.這款軟件的激活碼為下面數(shù)學題的答案:記集合…,…,例如:,,若將集合的各個元素之和設為該軟件的激活碼,則該激活碼應為________.15.已知數(shù)列滿足,則=________.16.直線l過拋物線的焦點F,且l與該拋物線交于不同的兩點,.若,則弦AB的長是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在2016珠海航展志愿服務開始前,團珠海市委調查了北京師范大學珠海分校某班50名志愿者參加志愿服務禮儀培訓和賽會應急救援培訓的情況,數(shù)據(jù)如下表:單位:人參加志愿服務禮儀培訓未參加志愿服務禮儀培訓參加賽會應急救援培訓88未參加賽會應急救援培訓430(1)從該班隨機選1名同學,求該同學至少參加上述一個培訓的概率;(2)在既參加志愿服務禮儀培訓又參加賽會應急救援培訓的8名同學中,有5名男同學A,A,A,A,A名女同學B,B,B現(xiàn)從這5名男同學和3名女同學中各隨機選1人,求A被選中且B未被選中的概率.18.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過點的切線方程.19.(12分)設P是拋物線上一個動點,F(xiàn)為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.20.(12分)如圖,在四棱錐中,平面,底面為正方形,且,點在棱上,且直線與平面所成角的正弦值為(1)求點的位置;(2)求點到平面的距離21.(12分)等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,設數(shù)列的前項和為,求.22.(10分)已知橢圓,離心率分別為左右焦點,橢圓上一點滿足,且的面積為1.(1)求橢圓的標準方程;(2)過點作斜率為的直線交橢圓于兩點.過點且平行于的直線交橢圓于點,證明:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】“”是“”的充分不必要條件,結合集合的包含關系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時,可把充分條件、必要條件或充要條件轉化為集合間的關系,由此得到不等式(組)后再求范圍.解題時要注意,在利用兩個集合之間的關系求解參數(shù)的取值范圍時,不等式是否能夠取等號決定端點值的取舍,處理不當容易出現(xiàn)漏解或增解的現(xiàn)象.2、A【解析】先求得參數(shù)b,再去依次去求、、,即可判斷出的單調性.【詳解】由得則,由得a在上增大時,增大.故選:A3、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.4、C【解析】轉化為圓心在原點半徑為1的上半圓和表示恒過定點的直線始終有兩個公共點,結合圖形可得答案.【詳解】令,平方得表示圓心在原點半徑為1的上半圓,表示恒過定點的直線,方程有兩個不同的解即半圓和直線要始終有兩個公共點,如圖圓心到直線的距離為,解得,當直線經(jīng)過時由得,當直線經(jīng)過時由得,所以實數(shù)k的取值范圍為.故選:C.5、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.6、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結果.【詳解】設原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負),故.故選:D.7、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A8、C【解析】根據(jù)對稱性求得坐標即可.【詳解】點關于平面的對稱點的坐標是,故選:C9、C【解析】由等差數(shù)列下標和性質可得.【詳解】因為,,所以.故選:C10、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B11、D【解析】利用等差數(shù)列下標和的性質求值即可.【詳解】由等差數(shù)列下標和性質知:.故選:D12、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量可得,結合計算即可.【詳解】由題意知,,所以,解得.故答案:314、376【解析】由題設知集合的規(guī)律為最小的元素為且元素構成公差1的等差數(shù)列,共有個元素,即可寫出的所有元素,應用等差數(shù)列前n項和公式求激活碼.【詳解】由題設,或,即,或,即,所以或,則,故各個元素之和為.故答案為:.15、4【解析】根據(jù)對數(shù)的運算性質得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項公式化簡可得值.【詳解】因為,所以,即數(shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點睛】本題考查等比數(shù)列的定義和通項公式以及對數(shù)的運算性質,熟練運用相應的公式即可,屬于基礎題.16、4【解析】由題意得,再結合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)表中數(shù)據(jù)知未參加志愿服務禮儀培訓又未參加賽會應急救援培訓的有30人,故至少參加上述一個培訓的共有人.從而求得概率;(2)從這5名男同學和3名女同學中各隨機選1人,列出其一切可能的結果,從而求得被選中且未被選中的概率.【詳解】解:由調查數(shù)據(jù)可知,既未參加志愿服務禮儀培訓又未參加賽會應急救援培訓的有30人,故至少參加上述一個培訓的共有人.從該班隨機選1名同學,該同學至少參加上述一個培訓的概率為;從這5名男同學和3名女同學中各隨機選1人,其一切可能的結果組成的基本事件有:,,,共15個,根據(jù)題意,這些基本事件的出現(xiàn)是等可能的,事件“被選中且未被選中”所包含的基本事件有:,共2個,被選中且未被選中的概率為.18、(1);(2).【解析】(1)首先求導函數(shù),計算,接著根據(jù)導數(shù)的幾何意義確定切線的斜率,最后根據(jù)點斜式寫出直線方程即可;(2)因為點不在曲線上,所以設切點為,根據(jù)導數(shù)的幾何意義寫出切線的方程,代入點求解,最后寫出切線方程即可.【詳解】(1).,.所以曲線在處的切線方程為,即(2)設切點為,則曲線在點處的切線方程為,代入點得,,.所以曲線過點的切線方程為,即.19、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉化為求的最小值,即求.(2)判斷點B在拋物線的內部,過B作垂直準線于點Q,交拋物線于點,利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點為,準線方程為.由已知及拋物線的定義,可知,于是問題轉化為求的最小值.由平面幾何知識知,當F,P,A三點共線時,取得最小值,最小值為,即的最小值為.(2)把點B的橫坐標代入中,得,因為,所以點B在拋物線的內部.過B作垂直準線于點Q,交拋物線于點(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點睛】本題考查了拋物線的定義,理解定義是解題的關鍵,屬于基礎題.20、(1)為棱中點(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,其中,利用空間向量法可得出關于的方程,結合求出的值,即可得出點的位置;(2)利用空間向量法可求得點到平面的距離【小問1詳解】解:因為平面,底面為正方形,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、,設,其中,則,設平面的法向量為,,,由,取,可得,由題意可得,整理可得,因為,解得,因此,點為棱的中點.【小問2詳解】解:由(1)知為棱中點,即,則,又,設平面的法向量為,由,取,可得,因為,所以,點到平面的距離為.21、(1),(2)【解析】(1)根據(jù)條件列關于公差與公比的方程組,解方程組可得再根據(jù)等差數(shù)列與等比數(shù)列通項公式得結果(2)根據(jù)錯誤相減法求數(shù)列的前項和為,注意作差時項符號的變化以及求和時項數(shù)的確定試題解析:(1)設數(shù)列的公差為,數(shù)列的公比為,則由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.點睛:用錯位相減法求和應注意的問題(1)要善于識別題目類型,特別是等比數(shù)列公比為負數(shù)的情形;(2)在寫出“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式;(3)在應用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應分公比等于1和不等于1兩種情況求解.22、(1)(2)證明見解析【解析】(1)方法一:根據(jù)離心率以及,可得出,將條件轉化為點在以為直徑的圓上,即為圓與橢圓的交點,將的面積用表示,求出,進而求出橢圓的標準方程;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論