2024屆級(jí)廣元中學(xué)高補(bǔ)班下學(xué)期第一次段考數(shù)學(xué)試題_第1頁(yè)
2024屆級(jí)廣元中學(xué)高補(bǔ)班下學(xué)期第一次段考數(shù)學(xué)試題_第2頁(yè)
2024屆級(jí)廣元中學(xué)高補(bǔ)班下學(xué)期第一次段考數(shù)學(xué)試題_第3頁(yè)
2024屆級(jí)廣元中學(xué)高補(bǔ)班下學(xué)期第一次段考數(shù)學(xué)試題_第4頁(yè)
2024屆級(jí)廣元中學(xué)高補(bǔ)班下學(xué)期第一次段考數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆級(jí)廣元中學(xué)高補(bǔ)班下學(xué)期第一次段考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若的內(nèi)角滿足,則的值為()A. B. C. D.2.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無(wú)區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.3.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.4.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.5.已知集合,,則A. B. C. D.6.已知雙曲線的左、右焦點(diǎn)分別為、,拋物線與雙曲線有相同的焦點(diǎn).設(shè)為拋物線與雙曲線的一個(gè)交點(diǎn),且,則雙曲線的離心率為()A.或 B.或 C.或 D.或7.為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開(kāi)始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占2019年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見(jiàn)下表:實(shí)施項(xiàng)目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍8.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%9.函數(shù)在上的大致圖象是()A. B.C. D.10.已知等式成立,則()A.0 B.5 C.7 D.1311.已知拋物線:,直線與分別相交于點(diǎn),與的準(zhǔn)線相交于點(diǎn),若,則()A.3 B. C. D.12.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為且滿足,則數(shù)列的通項(xiàng)_______.14.設(shè)雙曲線的左焦點(diǎn)為,過(guò)點(diǎn)且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點(diǎn)若,則的離心率為_(kāi)_______.15.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績(jī),現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績(jī)的份數(shù)為30,則抽取的樣本容量為_(kāi)___________.16.的展開(kāi)式中的系數(shù)為_(kāi)_________(用具體數(shù)據(jù)作答).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)橢圓E:(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由.18.(12分)已知函數(shù)是自然對(duì)數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.19.(12分)已知的面積為,且.(1)求角的大小及長(zhǎng)的最小值;(2)設(shè)為的中點(diǎn),且,的平分線交于點(diǎn),求線段的長(zhǎng).20.(12分)語(yǔ)音交互是人工智能的方向之一,現(xiàn)在市場(chǎng)上流行多種可實(shí)現(xiàn)語(yǔ)音交互的智能音箱.主要代表有小米公司的“小愛(ài)同學(xué)”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過(guò)語(yǔ)音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購(gòu)買(mǎi)者性別之間的關(guān)聯(lián)程度,從某地區(qū)隨機(jī)抽取了100名購(gòu)買(mǎi)“小愛(ài)同學(xué)”和100名購(gòu)買(mǎi)“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛(ài)同學(xué)”智能音箱“天貓精靈”智能音箱合計(jì)男4560105女554095合計(jì)100100200(1)若該地區(qū)共有13000人購(gòu)買(mǎi)了“小愛(ài)同學(xué)”,有12000人購(gòu)買(mǎi)了“天貓精靈”,試估計(jì)該地區(qū)購(gòu)買(mǎi)“小愛(ài)同學(xué)”的女性比購(gòu)買(mǎi)“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認(rèn)為購(gòu)買(mǎi)“小愛(ài)同學(xué)”、“天貓精靈”與性別有關(guān)?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82821.(12分)已知,且的解集為.(1)求實(shí)數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實(shí)數(shù)取值范圍.22.(10分)已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿足1e(e為自然對(duì)數(shù)的底數(shù))求x1?x2的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因?yàn)?,所?故選:A.【點(diǎn)睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡(jiǎn)、求值問(wèn)題,著重考查了推理與計(jì)算能力.2、A【解析】

由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.4、B【解析】

利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.5、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問(wèn)題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.6、D【解析】

設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【詳解】過(guò)分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點(diǎn),則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點(diǎn)睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡(jiǎn)單性質(zhì),考查運(yùn)算求解能力,屬于中檔題.7、B【解析】

設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B【點(diǎn)睛】本題考查了概率與統(tǒng)計(jì),考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.8、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布9、D【解析】

討論的取值范圍,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線的斜率變小,當(dāng)時(shí),,故切線的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線的斜率變大,當(dāng)時(shí),,故切線的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識(shí)別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.10、D【解析】

根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.11、C【解析】

根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過(guò)拋物線的焦點(diǎn)如圖,過(guò)A,M作準(zhǔn)線的垂直,垂足分別為C,D,過(guò)M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線的焦點(diǎn)弦的斜率,常見(jiàn)于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.12、C【解析】

先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求得時(shí);再由可得時(shí),兩式作差可得,進(jìn)而求解.【詳解】當(dāng)時(shí),,解得;由,可知當(dāng)時(shí),,兩式相減,得,即,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以,故答案為:【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查等比數(shù)列的通項(xiàng)公式的應(yīng)用.14、【解析】

設(shè)直線的方程為,與聯(lián)立得到A點(diǎn)坐標(biāo),由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點(diǎn)睛】本題考查了雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.15、【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:【點(diǎn)睛】本題考查隨機(jī)抽樣中的分層抽樣,考查學(xué)生基本的運(yùn)算能力,是一道容易題.16、【解析】

利用二項(xiàng)展開(kāi)式的通項(xiàng)公式可求的系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來(lái)計(jì)算,本題屬于容易題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因?yàn)橹本€為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時(shí)圓的切線都滿足或,而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為或滿足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往要利用韋達(dá)定理.存在性問(wèn)題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識(shí)證明了圓的存在性.18、(1)減區(qū)間是,增區(qū)間是;(2),證明見(jiàn)解析.【解析】

(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個(gè)極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時(shí),遞減,當(dāng)時(shí),遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時(shí),所以當(dāng)時(shí),有一個(gè)極值點(diǎn),當(dāng)時(shí),有兩個(gè)極值點(diǎn),當(dāng)時(shí),沒(méi)有極值點(diǎn),綜上因?yàn)槭堑膬蓚€(gè)極值點(diǎn),所以不妨設(shè),得,因?yàn)樵谶f減,且,所以又所以【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.19、(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質(zhì)求角及最大邊;(2)根據(jù)的長(zhǎng)度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因?yàn)樵谥校?,所以,因?yàn)椋ó?dāng)且僅當(dāng)時(shí)取等),所以長(zhǎng)的最小值為;(2)在三角形中,因?yàn)闉橹芯€,所以,,所以,因?yàn)?,所以,所以,由?)知,所以,或,,所以,因?yàn)闉榻瞧椒志€,,,或2,所以,或,所以.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,余弦定理解三角形及三角形面積公式的應(yīng)用,屬于中檔題.20、(1)多2350人;(2)有95%的把握認(rèn)為購(gòu)買(mǎi)“小愛(ài)同學(xué)”、“天貓精靈”與性別有關(guān).【解析】

(1)根據(jù)題意,知100人中購(gòu)買(mǎi)“小愛(ài)同學(xué)”的女性有55人,購(gòu)買(mǎi)“天貓精靈”的女性有40人,即可估計(jì)該地區(qū)購(gòu)買(mǎi)“小愛(ài)同學(xué)”的女性人數(shù)和購(gòu)買(mǎi)“天貓精靈”的女性的人數(shù),即可求得答案;(2)根據(jù)列聯(lián)表和給出的公式,求出,與臨界值比較,即可得出結(jié)論.【詳解】解:(1)由題可知,100人中購(gòu)買(mǎi)“小愛(ài)同學(xué)”的女性有55人,購(gòu)買(mǎi)“天貓精靈”的女性有40人,由于地區(qū)共有13000人購(gòu)買(mǎi)了“小愛(ài)同學(xué)”,有12000人購(gòu)買(mǎi)了“天貓精靈”,估計(jì)購(gòu)買(mǎi)“小愛(ài)同學(xué)”的女性有人.估計(jì)購(gòu)買(mǎi)“天貓精靈”的女性有人.則,∴估計(jì)該地區(qū)購(gòu)買(mǎi)“小愛(ài)同學(xué)”的女性比購(gòu)買(mǎi)“天貓精靈”的女性多2350人.(2)由題可知,,∴有95%的把握認(rèn)為購(gòu)買(mǎi)“小愛(ài)同學(xué)”、“天貓精靈”與性別有關(guān).【點(diǎn)睛】本題考查隨機(jī)抽樣估計(jì)總體以及獨(dú)立性檢驗(yàn)的應(yīng)用,考查計(jì)算能力.21、(1),;(2)【解析】

(1)解絕對(duì)值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點(diǎn)的坐標(biāo),通過(guò)分割法將四邊形的面積分為兩個(gè)三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過(guò)點(diǎn)向引垂線,垂足為,則.化簡(jiǎn)得:,(舍)或.故的取值范圍為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的求法,以及絕對(duì)值不等式在幾何中的應(yīng)用,屬于中檔題.22、(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)【解析】

(1)化簡(jiǎn)函數(shù)h(x),求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,則f′(x)=lnx﹣mx=0有兩個(gè)正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論