版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省南陽中學2025屆高二數(shù)學第一學期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知焦點在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.2.雙曲線的焦點到漸近線的距離為()A. B.2C. D.3.若1,m,9三個數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或24.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.5.函數(shù)的圖象如圖所示,是f(x)的導函數(shù),則下列數(shù)值排序正確的是()A B.C. D.6.函數(shù)的定義域為,其導函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.57.下列雙曲線中,以為一個焦點,以為一個頂點的雙曲線方程是()A. B.C. D.8.若、、為空間三個單位向量,,且與、所成的角均為,則()A.5 B.C. D.9.已知等比數(shù)列中,,,則公比()A. B.C. D.10.設是周期為2的奇函數(shù),當時,,則()A. B.C. D.11.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<112.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.14.等比數(shù)列的前n項和,則的通項公式為___________.15.若點P為雙曲線上任意一點,則P滿足性質:點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______16.已知橢圓方程為,左、右焦點分別為、,P為橢圓上的動點,若的最大值為,則橢圓的離心率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點為,點在上,點在的內(nèi)側,且的最小值為.(1)求的方程;(2)為坐標原點,點A在y軸正半軸上,點B,C為E上兩個不同的點,其中B點在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.18.(12分)已知橢圓:的左、右焦點分別為,,過點的直線l交橢圓于A,兩點,的中點坐標為.(1)求直線l的方程;(2)求的面積.19.(12分)已知直線與雙曲線交于,兩點,為坐標原點(1)當時,求線段的長;(2)若以為直徑的圓經(jīng)過坐標原點,求的值20.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設備的維修保養(yǎng)費用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時,年平均利潤最大21.(12分)已知圓的圓心在直線上,且圓與軸相切于點(1)求圓的標準方程;(2)若直線與圓相交于,兩點,求的面積22.(10分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D2、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A3、D【解析】運用等比數(shù)列的性質可得,再討論,,求出曲線的,,由離心率公式計算即可得到【詳解】三個數(shù)1,,9成等比數(shù)列,則,解得,,當時,曲線為橢圓,則;當時,曲線為為雙曲線,則離心率故選:4、C【解析】由已知條件計算可得,即得到結果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C5、A【解析】結合導數(shù)的幾何意義確定正確選項.【詳解】,表示兩點連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據(jù)圖象可知,.故選:A6、C【解析】根據(jù)給定的導函數(shù)的圖象,結合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設導函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側的導數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.7、C【解析】設出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點是,故可設雙曲線方程為,且;又為一個頂點,故可得,解得,則雙曲線方程為:.故選:.8、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C9、C【解析】利用等比中項的性質可求得的值,再由可求得結果.【詳解】由等比中項的性質可得,解得,又,,故選:C.10、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質通過得結論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關于原點對稱的區(qū)間,然后再由奇函數(shù)性質求得函數(shù)值11、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質,雙曲線的簡單幾何性質【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現(xiàn)錯誤12、B【解析】根據(jù)拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質;考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質是求解本題的關鍵;屬于中檔題、??碱}型.14、【解析】利用的關系,結合是等比數(shù)列,即可求得結果.【詳解】因為,故當時,,則,又當時,,因為是等比數(shù)列,故也滿足,即,故,此時滿足,則.故答案為:.15、【解析】若Q到的距離為有,由題設有,結合雙曲線離心率的性質,即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關鍵點點睛:若Q到的距離為,根據(jù)給定性質有Q到左、右焦點的距離分別為、,再由雙曲線性質及已知條件列不等式組求離心率范圍.16、【解析】利用橢圓的定義結合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因為的最大值為,則,可得,因此,該橢圓的離心率為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意,結合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設,根據(jù)拋物線的對稱性,可表示出B,C的坐標,從而利用向量的坐標運算,求得所設參數(shù)值,進而求得答案.【小問1詳解】的準線為:,作于R,根據(jù)拋物線的定義有,所以,因為在的內(nèi)側,所以當P,Q,R三點共線時,取得最小值,此時,解得,所以的方程為.小問2詳解】因為AB,OC互相垂直平分,所以四邊形AOBC是菱形.由,得軸,設點,則,由拋物線的對稱性知,,,.由,得,解得,所以在菱形中,,邊上的高,所以菱形的面積.18、(1)(2)【解析】(1)設,根據(jù)AB的中點坐標可得,再利用點差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點,聯(lián)立直線和橢圓方程,消,利用韋達定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設,因為的中點坐標為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問2詳解】在直線中,當時,,由橢圓:,得,則直線過點,聯(lián)立,消整理得,則,.19、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點可得,設,從而,聯(lián)立直線方程和雙曲線方程后利用韋達定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當時,直線,設,由可得,此時,故.【小問2詳解】設,因為以為直徑的圓經(jīng)過坐標原點,故,故,由可得,故且,故.而可化為即,因為,所以,解得,結合其范圍可得.20、(1)公司從第3年開始獲利;(2)第9年時每臺充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達式,推出表達式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費用是以1100為首項,400為公差的等差數(shù)列,設第n年時累計利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺充電樁年平均利潤為當且僅當,即n=9時,等號成立即在第9年時每臺充電樁年平均利潤最大3600元【點睛】本題考查數(shù)列與函數(shù)的實際應用,基本不等式的應用,考查轉化思想以及計算能力,是中檔題21、(1)(2)4【解析】(1)由已知設圓心,再由相切求圓半徑從而得解.(2)求弦長,再求點到直線的距離,進而可得解.【小問1詳解】因為圓心在直線上,所以設圓心,又圓與軸相切于點,所以,即圓與軸相切,則圓的半徑,于是圓的方程為【小問2詳解】圓心到直線的距離,則,又到直線的距離為,所以.22、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質與面積可求得即可求得方程;(2)當直線斜率不為0時,設其方程代入橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民辦學校教師教學科研獎勵聘用合同4篇
- 2025版高端汽車零部件模具定制合同4篇
- 二零二五年度企業(yè)電子商務法律風險防范合同
- 2025版砂石開采與環(huán)保治理合同3篇
- 二零二五年度人才招聘居間服務合同范本(航天行業(yè)適用)2篇
- 二零二五年度圖書館建筑裝飾工程合同范本2篇
- 3 關節(jié)置換術止血與抗凝的綜合管理
- 二零二五年度裝配式內(nèi)裝工程承包合同范本4篇
- 2025年度臨街商店攤位租賃與垃圾分類處理合同3篇
- 二零二五年度企業(yè)形象宣傳片創(chuàng)意策劃與執(zhí)行合同
- 2023-2024學年度人教版一年級語文上冊寒假作業(yè)
- 培訓如何上好一堂課
- 2024醫(yī)療銷售年度計劃
- 稅務局個人所得稅綜合所得匯算清繳
- 人教版語文1-6年級古詩詞
- 上學期高二期末語文試卷(含答案)
- 軟件運維考核指標
- 空氣動力學仿真技術:格子玻爾茲曼方法(LBM)簡介
- 中學英語教學設計PPT完整全套教學課件
- 移動商務內(nèi)容運營(吳洪貴)項目五 運營效果監(jiān)測
- 比較思想政治教育學
評論
0/150
提交評論