版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉林省長(zhǎng)春市九臺(tái)市師范中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若將一個(gè)橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),這樣的橢圓稱為“對(duì)偶橢圓”,下列橢圓中是“對(duì)偶橢圓”的是()A. B.C. D.2.已知i是虛數(shù)單位,復(fù)數(shù)z=,則復(fù)數(shù)z的虛部為()A.i B.-iC.1 D.-13.如圖,在棱長(zhǎng)為1的正方體中,M是的中點(diǎn),則點(diǎn)到平面MBD的距離是()A. B.C. D.4.若雙曲線與橢圓有公共焦點(diǎn),且離心率,則雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.5.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.46.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.7.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C.1025 D.20498.已知拋物線的焦點(diǎn)為,拋物線的焦點(diǎn)為,點(diǎn)在上,且,則直線的斜率為A. B.C. D.9.已知實(shí)數(shù)滿足方程,則的最大值為()A.3 B.2C. D.10.拋物線的焦點(diǎn)坐標(biāo)是()A.(0,-1) B.(-1,0)C. D.11.已知斜率為1的直線l過橢圓的右焦點(diǎn),交橢圓于A,B兩點(diǎn),則弦AB的長(zhǎng)為()A. B.C. D.12.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.由曲線圍成的圖形的面積為________14.設(shè)函數(shù),,對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是______15.直線與曲線有且僅有一個(gè)公共點(diǎn).則b的取值范圍是__________16.某校開展“讀書月”朗誦比賽,9位評(píng)委為選手A給出的分?jǐn)?shù)如右邊莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后算得平均分為91,復(fù)核員在復(fù)核時(shí)發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無法看清,若記分員計(jì)算無誤,則數(shù)字x應(yīng)該是___________.選手A87899924x15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是橢圓的兩個(gè)焦點(diǎn),P為C上一點(diǎn),O為坐標(biāo)原點(diǎn)(1)若為等邊三角形,求C的離心率;(2)如果存在點(diǎn)P,使得,且的面積等于16,求b的值和a的取值范圍.18.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值19.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(diǎn)(1)求證:平面MND⊥平面PCD;(2)求點(diǎn)P到平面MND的距離20.(12分)已知橢圓過點(diǎn),且離心率(1)求橢圓的方程;(2)設(shè)點(diǎn)為橢圓的左焦點(diǎn),點(diǎn),過點(diǎn)作的垂線交橢圓于點(diǎn),,連接與交于點(diǎn)①若,求;②求的值21.(12分)已知橢圓的上頂點(diǎn)在直線上,點(diǎn)在橢圓上.(1)求橢圓C的方程;(2)點(diǎn)P,Q在橢圓C上,且,,點(diǎn)G為垂足,是否存在定圓恒經(jīng)過A,G兩點(diǎn),若存在,求出圓的方程;若不存在,請(qǐng)說明理由.22.(10分)已知拋物線E:過點(diǎn)Q(1,2),F(xiàn)為其焦點(diǎn),過F且不垂直于x軸的直線l交拋物線E于A,B兩點(diǎn),動(dòng)點(diǎn)P滿足△PAB的垂心為原點(diǎn)O.(1)求拋物線E的方程;(2)求證:動(dòng)點(diǎn)P在定直線m上,并求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進(jìn)而判斷所給命題的真假【詳解】解:因?yàn)闄E圓短的軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:2、C【解析】先通過復(fù)數(shù)的除法運(yùn)算求出z,進(jìn)而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.3、A【解析】等體積法求解點(diǎn)到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點(diǎn)E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點(diǎn)到平面MBD的距離是.故選:A4、A【解析】首先求出橢圓的焦點(diǎn)坐標(biāo),然后根據(jù)可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點(diǎn)坐標(biāo)為所以雙曲線的焦點(diǎn)在軸上,,因?yàn)?,所以,所以雙曲線的標(biāo)準(zhǔn)方程為故選:A5、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.6、D【解析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因?yàn)樗械幕臼录灿蟹N,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D7、B【解析】根據(jù)題意得,進(jìn)而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因?yàn)閿?shù)列的前n項(xiàng)和為滿足,所以當(dāng)時(shí),,解得,當(dāng)時(shí),,即所以,解得或,因?yàn)椋?所以,,所以當(dāng)時(shí),,所以,即所以數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,所以故選:B8、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標(biāo)準(zhǔn)方程,求得拋物線的焦點(diǎn)坐標(biāo)后,再根據(jù)斜率公式求解.【詳解】因?yàn)?,所以,解得,所以直線的斜率為.故選B.【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了拋物線的簡(jiǎn)單性質(zhì),涉及了直線的斜率公式;拋物線上的點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離;解題過程中注意焦點(diǎn)的位置.9、D【解析】將方程化為,由圓的幾何性質(zhì)可得答案.【詳解】將方程變形為,則圓心坐標(biāo)為,半徑,則圓上的點(diǎn)的橫坐標(biāo)的范圍為:則x的最大值是故選:D.10、C【解析】根據(jù)拋物線標(biāo)準(zhǔn)方程,可得p的值,進(jìn)而求出焦點(diǎn)坐標(biāo).【詳解】由拋物線可知其開口向下,,所以焦點(diǎn)坐標(biāo)為,故選:C.11、C【解析】根據(jù)題意求得直線l的方程,設(shè),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理求得,再利用弦長(zhǎng)公式即可得出答案.【詳解】由橢圓知,,所以,所以右焦點(diǎn)坐標(biāo)為,則直線的方程為,設(shè),聯(lián)立,消y得,,則,所以.即弦AB長(zhǎng)為.故選:C.12、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】曲線圍成的圖形關(guān)于軸,軸對(duì)稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于關(guān)于軸,軸對(duì)稱,因此只需求出第一象限的面積即可.當(dāng),時(shí),曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.14、【解析】首先求得函數(shù)在區(qū)間上的最大值,然后分離參數(shù),利用導(dǎo)函數(shù)求最值即可確定實(shí)數(shù)的取值范圍.【詳解】∵在上恒成立,∴當(dāng)時(shí),取最大值1,∵對(duì)任意的,都有成立,∴在上恒成立,即在上恒成立,令,則,,∵在上恒成立,∴在上為減函數(shù),∵當(dāng)時(shí),,故當(dāng)時(shí),取最大值1,故,故答案為【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的最值,難度中檔15、或.【解析】根據(jù)曲線方程得曲線的軌跡是個(gè)半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個(gè)交點(diǎn);(2)直線與半圓相交于一個(gè)點(diǎn),綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點(diǎn)為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個(gè)公共點(diǎn)有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個(gè)交點(diǎn),由圖可知.故答案為:或.【點(diǎn)睛】方法點(diǎn)睛:處理直線與圓位置關(guān)系時(shí),若兩方程已知或圓心到直線的距離易表達(dá),則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達(dá)較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進(jìn)行分析.16、4【解析】根據(jù)題意分和兩種情況討論,再根據(jù)平均分公式計(jì)算即可得出答案.【詳解】解:當(dāng)時(shí),則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為95分,則,所以,當(dāng)時(shí),則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為分,則平均分為,與題意矛盾,綜上.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),a的取值范圍為.【解析】(1)先連結(jié),由為等邊三角形,得到,,;再由橢圓定義,即可求出結(jié)果;(2)先由題意得到,滿足條件的點(diǎn)存在,當(dāng)且僅當(dāng),,,根據(jù)三個(gè)式子聯(lián)立,結(jié)合題中條件,即可求出結(jié)果.【詳解】(1)連結(jié),由等邊三角形可知:在中,,,,于是,故橢圓C的離心率為;(2)由題意可知,滿足條件的點(diǎn)存在,當(dāng)且僅當(dāng),,,即①②③由②③以及得,又由①知,故;由②③得,所以,從而,故;當(dāng),時(shí),存在滿足條件的點(diǎn).故,a的取值范圍為.【點(diǎn)睛】本題主要考查求橢圓的離心率,以及橢圓中存在定點(diǎn)滿足題中條件的問題,熟記橢圓的簡(jiǎn)單性質(zhì)即可求解,考查計(jì)算能力,屬于中檔試題.18、(1);(2)最大值為,最小值為【解析】(1)求出導(dǎo)函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進(jìn)而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當(dāng)變化時(shí),與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.19、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標(biāo)系,根據(jù)題中數(shù)據(jù)可得、、的坐標(biāo),利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點(diǎn)到平面的距離公式加以計(jì)算即可得到點(diǎn)到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設(shè),,是平面的一個(gè)法向量,可得,取,得,,,,是平面的一個(gè)法向量,同理可得,1,是平面的一個(gè)法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個(gè)法向量,,2,,得,點(diǎn)到平面的距離20、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯(lián)立,解方程組求出的坐標(biāo),從而可求出;②當(dāng)時(shí),,當(dāng)時(shí),直線方程為,與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系,結(jié)合中點(diǎn)坐標(biāo)公式可得中點(diǎn)的坐標(biāo),再將直線的方程與方程聯(lián)立,求出點(diǎn)的坐標(biāo),從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當(dāng)時(shí),直線的斜率,則的垂線的方程為由得解得故,,②由,,顯然斜率存在,,當(dāng)時(shí),當(dāng)時(shí),直線過點(diǎn)且與直線垂直,則直線方程為由得顯然設(shè),,則,則中點(diǎn)直線的方程為,由得所以綜上的值為21、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線的方程,利用韋達(dá)定理及條件可得直線恒過定點(diǎn),則以為直徑的圓適合題意,即得.【小問1詳解】由題設(shè)知,橢圓上頂點(diǎn)為,且在直線上∴,即又點(diǎn)在橢圓上,∴解得,∴橢圓C的方程為;【小問2詳解】設(shè),,當(dāng)直線斜率存在,設(shè)直線為:聯(lián)立方程,化簡(jiǎn)得∴,,∵,∴又∵,∴將,代入,化簡(jiǎn)得,即則或,①當(dāng)時(shí),直線恒過定點(diǎn)與點(diǎn)重合,不符題意.②當(dāng)時(shí),直線恒過定點(diǎn),記為點(diǎn),∵,∴以為直徑,其中點(diǎn)為圓心的圓恒經(jīng)過兩點(diǎn),則圓方程為:;當(dāng)直線斜率不存在,設(shè)方程為,,,且,,∴,解得或(舍去),,取,以為直徑作圓,圓方程為:恒經(jīng)過兩點(diǎn),綜上所述,存在定圓恒經(jīng)過兩點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問的關(guān)鍵是證明直線恒過定點(diǎn),結(jié)合條件可得以為直徑的圓,適合題意即得.22、(1);(2)證明見解析,的最小值為.【解析】(1)將點(diǎn)的坐標(biāo)代入拋物線方程,由此求得的值,進(jìn)而求得拋物線的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達(dá)定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度水陸聯(lián)運(yùn)貨物保險(xiǎn)及運(yùn)輸合同
- 二零二五年度新能源儲(chǔ)能技術(shù)聘用合同8篇
- 二零二四年度信息化設(shè)備融資租賃管理合同3篇
- 課件:正確認(rèn)識(shí)高職院校內(nèi)部質(zhì)量保證體系診斷與改進(jìn)
- 二零二五年度牧草生物質(zhì)能項(xiàng)目合作協(xié)議4篇
- 2025版農(nóng)家樂民宿租賃管理服務(wù)合同2篇
- 二零二五版年薪制勞動(dòng)合同:房地產(chǎn)企業(yè)銷售精英激勵(lì)方案4篇
- 第三單元 資產(chǎn)階級(jí)民主革命與中華民國(guó)的建立(解析版)- 2023-2024學(xué)年八年級(jí)歷史上學(xué)期期中考點(diǎn)大串講(部編版)
- 2025年度個(gè)人家政服務(wù)分期支付合同范本2篇
- 二零二五年度地鐵車站安全門系統(tǒng)采購(gòu)合同
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學(xué)生版-專題08 古詩(shī)詞名篇名句默寫
- 2024-2025學(xué)年人教版(2024)七年級(jí)(上)數(shù)學(xué)寒假作業(yè)(十二)
- 山西粵電能源有限公司招聘筆試沖刺題2025
- ESG表現(xiàn)對(duì)企業(yè)財(cái)務(wù)績(jī)效的影響研究
- 醫(yī)療行業(yè)軟件系統(tǒng)應(yīng)急預(yù)案
- 使用錯(cuò)誤評(píng)估報(bào)告(可用性工程)模版
- 《精密板料矯平機(jī) 第2部分:技術(shù)規(guī)范》
- 黑枸杞生物原液應(yīng)用及產(chǎn)業(yè)化項(xiàng)目可行性研究報(bào)告
- 2024年黑龍江省政工師理論知識(shí)考試參考題庫(kù)(含答案)
- 四年級(jí)上冊(cè)脫式計(jì)算300題及答案
評(píng)論
0/150
提交評(píng)論