2025屆廣東省湛江市第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆廣東省湛江市第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆廣東省湛江市第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆廣東省湛江市第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆廣東省湛江市第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆廣東省湛江市第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.江西省重點(diǎn)中學(xué)協(xié)作體于2020年進(jìn)行了一次校際數(shù)學(xué)競賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯(cuò)誤的是()A.得分在之間的共有40人B.從這100名參賽者中隨機(jī)選取1人,其得分在的概率為0.5C.這100名參賽者得分的中位數(shù)為65D.可求得2.在數(shù)列中,,,,則()A.2 B.C. D.13.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.4.如圖,在棱長為2的正方體中,點(diǎn)P在截面上(含邊界),則線段的最小值等于()A. B.C. D.5.已知等差數(shù)列,且,則()A.3 B.5C.7 D.96.已知是空間的一個(gè)基底,若,,若,則()A B.C.3 D.7.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.8.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動點(diǎn),則的最小值為().A. B.C. D.9.從2,4中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為()A.48 B.36C.24 D.1810.空間四點(diǎn)共面,但任意三點(diǎn)不共線,若為該平面外一點(diǎn)且,則實(shí)數(shù)的值為()A. B.C. D.11.已知{}為等比數(shù)列.,則=()A.—4 B.4C.—4或4 D.1612.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角,,的對邊分別為,,,若,且,則_______14.拋物線的焦點(diǎn)為F,準(zhǔn)線為l,C上的一點(diǎn)M在l上的射影為N,已知線段FN的垂直平分線方程為,則___________;___________.15.當(dāng)曲線與直線有兩個(gè)不同的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是____________16.若不等式的解集是,則的值是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是一個(gè)直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長19.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項(xiàng)和20.(12分)如圖,在三棱錐中,,點(diǎn)為線段上的點(diǎn).(1)若平面,試確定點(diǎn)的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.21.(12分)已知直線經(jīng)過橢圓的右焦點(diǎn),且橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)以橢圓的短軸為直徑作圓,若點(diǎn)M是第一象限內(nèi)圓周上一點(diǎn),過點(diǎn)M作圓的切線交橢圓C于P,Q兩點(diǎn),橢圓C的右焦點(diǎn)為,試判斷的周長是否為定值.若是,求出該定值22.(10分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)給定的頻率分布直方圖,結(jié)合直方圖的性質(zhì),逐項(xiàng)計(jì)算,即可求解.【詳解】由頻率分布直方圖,可得A中,得分在之間共有人,所以A正確;B中,從100名參賽者中隨機(jī)選取1人,其得分在中的概率為,所以B正確;D中,由頻率分布直方圖的性質(zhì),可得,解得,所以D正確.C中,前2個(gè)小矩形面積之和為0.4,前3個(gè)小矩形面積之和為0.7,所以中位數(shù)在[60,70],這100名參賽者得分的中位數(shù)為,所以C不正確;故選:C.2、A【解析】根據(jù)題中條件,逐項(xiàng)計(jì)算,即可得出結(jié)果.【詳解】因?yàn)?,,,所以,因?故選:A.3、C【解析】取中點(diǎn),連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計(jì)算的正弦值.【詳解】取中點(diǎn),連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C4、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設(shè)到平面的距離為,由得,解得故選:B5、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B6、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因?yàn)椋源嬖趯?shí)數(shù),使,所以,所以,所以,得,,所以,故選:C7、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計(jì)算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B8、A【解析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對稱點(diǎn),利用連點(diǎn)之間相對最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對稱點(diǎn)為,連接,則,于是故的最小值為故選:A【點(diǎn)睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題9、B【解析】直接利用乘法分步原理分三步計(jì)算即得解.【詳解】從中選一個(gè)數(shù)字,有種方法;從中選兩個(gè)數(shù)字,有種方法;組成無重復(fù)數(shù)字的三位數(shù),有個(gè).故選:B10、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點(diǎn)共面,但任意三點(diǎn)不共線,,解得:.故選:A.11、B【解析】根據(jù)題意先求出公比,進(jìn)而用等比數(shù)列通項(xiàng)公式求得答案.【詳解】由題意,設(shè)公比為q,則,則.故選:B.12、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計(jì)算即可得出離心率.【詳解】雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】代入,展開整理得,①化為,與①式相加得,轉(zhuǎn)化為關(guān)于的方程,求解即可得出結(jié)論.【詳解】因?yàn)?,所以,所以,因?yàn)?,所以,則,整理得,解得.故答案為:.【點(diǎn)睛】本題考查正弦定理的邊角互化,考查三角函數(shù)化簡求值,屬于中檔題.14、①.2②.4【解析】設(shè)點(diǎn),根據(jù)給定條件結(jié)合拋物線定義可得線段FN的中點(diǎn)及點(diǎn)M都在線段FN的垂直平分線,再列式計(jì)算作答.【詳解】拋物線的焦點(diǎn),準(zhǔn)線l:,設(shè)點(diǎn),則,線段FN的中點(diǎn),由拋物線定義知:,即點(diǎn)M在線段FN的垂直平分線,因此,,解得,而,則有,,所以,.故答案為:2;4【點(diǎn)睛】結(jié)論點(diǎn)睛:拋物線方程中,字母p的幾何意義是拋物線的焦點(diǎn)F到準(zhǔn)線的距離,等于焦點(diǎn)到拋物線頂點(diǎn)的距離15、【解析】求出直線恒過的定點(diǎn),結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因?yàn)?,故可得,其表示圓心為,半徑為的圓的上半部分;因?yàn)椋?,其表示過點(diǎn),且斜率為的直線.在同一坐標(biāo)系下作圖如下:不妨設(shè)點(diǎn),直線斜率為,且過點(diǎn)與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個(gè)不同的交點(diǎn),只需即可.容易知:;不妨設(shè)過點(diǎn)與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.16、【解析】利用和是方程的兩根,再利用根與系數(shù)的關(guān)系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關(guān)系可得:,所以,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點(diǎn)法去絕對值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點(diǎn):1絕對值不等式;2恒成立問題;3轉(zhuǎn)化思想18、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從而求出的長度.【小問1詳解】四棱錐,底面是一個(gè)直角梯形,,平面,所以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,,設(shè)平面的法向量,所以,,取,則,所以,平面,所以直線平面.【小問2詳解】,,,設(shè)平面的法向量,則,即,取,則,設(shè)直線與平面所成的角為,則,所以,所以直線與平面所成角的余弦值為.【小問3詳解】設(shè)平面的法向量為,則,即,取,得,平面的法向量,設(shè)二面角的平面角為,則,所以,所以二面角的正弦值為.【小問4詳解】,平面的法向量,所以點(diǎn)到平面的距離為.【小問5詳解】設(shè)點(diǎn)在平面的射影為點(diǎn),則,所以點(diǎn)到平面的距離為,根據(jù),得解得,,,或者,,(舍)所以.19、(1)見解析;(2)【解析】(1)利用定義法證明是一個(gè)與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項(xiàng)為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項(xiàng)公式為;則所以【點(diǎn)睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎(chǔ)題20、(1)點(diǎn)為MC的中點(diǎn),理由見解析;(2)【解析】(1)由線面垂直得到線線垂直,進(jìn)而由三線合一得到點(diǎn)為MC的中點(diǎn);(2)作出輔助線,找到二面角的平面角,利用勾股定理求出各邊長,用余弦定理求出答案.【小問1詳解】點(diǎn)為MC的中點(diǎn),理由如下:因?yàn)槠矫?,平面,所以,,又,由三線合一得:點(diǎn)為MC的中點(diǎn)【小問2詳解】取AB的中點(diǎn)H,連接PH,CH,則由(1)知:,結(jié)合點(diǎn)為MC的中點(diǎn),所以PA=PB,故由三線合一得:PH⊥AB,且CH⊥AB,所以∠CHP即為二面角的平面角,因?yàn)?,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值為21、(1)(2)周長是定值,且定值為4【解析】(1)首先求出直線與軸的交點(diǎn),即可求出,再根據(jù)離心率求出,最后根據(jù)求出,即可得解;(2):設(shè)直線的方程為、、,聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,即可表示出弦的長,再根據(jù)直線與圓相切,則圓心到直線的距離等于半徑,即可得到,再求出、,最后根據(jù)計(jì)算即可得解;【小問1詳解】解:因?yàn)榻?jīng)過橢圓的右焦點(diǎn),令,則,所以橢圓的右焦點(diǎn)為,可得:,又,可得:,由,所以,∴橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:設(shè)直線的方程為,由得:,所以,設(shè),,則:,所以.因?yàn)橹本€與圓相切,所以,即,所以,因?yàn)?,又,所以,同?所以,即的周長是定值,且定值為422、(1)見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論