版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省七臺河市2025屆數(shù)學高二上期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.七巧板是一種古老的中國傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.2.已知、、、是直線,、是平面,、、是點(、不重合),下列敘述錯誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則3.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除4.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六5.已知是數(shù)列的前項和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列6.平行直線:與:之間的距離等于()A. B.C. D.7.設是等差數(shù)列的前項和,已知,,則等于()A. B.C. D.8.在空間直角坐標系中,,,若∥,則x的值為()A.3 B.6C.5 D.49.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.1610.拋物線的準線方程為,則實數(shù)的值為()A. B.C. D.11.已知A,B,C三點不共線,O是平面ABC外一點,下列條件中能確定點M與點A,B,C一定共面的是A. B.C. D.12.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若等比數(shù)列滿足,則的前n項和____________14.已知函數(shù)在上單調(diào)遞減,則的取值范圍是______.15.某古典概型的樣本空間,事件,則___________.16.在公差不為的等差數(shù)列中,,,成等比數(shù)列,數(shù)列的前項和為(1)求數(shù)列的通項公式;(2)若,且數(shù)列的前項和為,求三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,,D為BC的中點,平面平面ABC(1)證明:;(2)已知四邊形是邊長為2的菱形,且,問在線段上是否存在點E,使得平面EAD與平面EAC的夾角的余弦值為,若存在,求出CE的長度,若不存在,請說明理由18.(12分)在平面直角坐標系xOy中,橢圓C:(a>b>0)的左、右焦點分別為,其離心率,且橢圓C經(jīng)過點.(1)求橢圓C的標準方程;(2)過點M作兩條不同的直線與橢圓C分別交于點A,B(均異于點M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.19.(12分)在平面直角坐標系中,已知橢圓的焦點為,且過點,橢圓的上、下頂點分別為,右頂點為,直線過點且垂直于軸(1)求橢圓的標準方程;(2)若點在橢圓上(且在第一象限),直線與交于點,直線與軸交于點,試問:是否為定值?若是,請求出定值;若不是,請說明理由20.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍21.(12分)等比數(shù)列的各項均為正數(shù),且,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列前項和.22.(10分)平行六面體,(1)若,,,,,,求長;(2)若以頂點A為端點的三條棱長均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C2、D【解析】由公理2可判斷A選項;由公理3可判斷B選項;利用平行線的傳遞性可判斷C選項;直接判斷線線位置關系,可判斷D選項.【詳解】對于A選項,由公理2可知,若,,,,則,A對;對于B選項,由公理3可知,若,,,則,B對;對于C選項,由空間中平行線的傳遞性可知,若,,則,C對;對于D選項,若,,則與平行、相交或異面,D錯.故選:D.3、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法4、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:5、D【解析】由得,然后利用與的關系即可求出【詳解】因為,所以所以當時,時,所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點睛】要注意由求要分兩步:1.時,2.時.6、B【解析】先由兩條直線平行解出,再按照平行線之間距離公式求解.【詳解】,則:,即,距離為.故選:B.7、C【解析】依題意有,解得,所以.考點:等差數(shù)列的基本概念.【易錯點晴】本題主要考查等差數(shù)列的基本概念.在解有關等差數(shù)列的問題時可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數(shù)列的通項公式及前項和公式,共涉及五個量,知其中三個就能求另外兩個,即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準它們的值.運用方程的思想解等差數(shù)列是常見題型,解決此類問題需要抓住基本量、,掌握好設未知數(shù)、列出方程、解方程三個環(huán)節(jié),常通過“設而不求,整體代入”來簡化運算8、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D9、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A10、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準線方程為,所以.故選:B11、D【解析】首先利用坐標法,排除錯誤選項,然后對符合的選項驗證存在使得,由此得出正確選項.【詳解】不妨設.對于A選項,,由于的豎坐標,故不在平面上,故A選項錯誤.對于B選項,,由于的豎坐標,故不在平面上,故B選項錯誤.對于C選項,,由于的豎坐標,故不在平面上,故C選項錯誤.對于D選項,,由于的豎坐標為,故在平面上,也即四點共面.下面證明結論一定成立:由,得,即,故存在,使得成立,也即四點共面.故選:D.【點睛】本小題主要考查空間四點共面的證明方法,考查空間向量的線性運算,考查數(shù)形結合的數(shù)學思想方法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.12、B【解析】求出的等價條件,結合充分條件和必要條件的定義判斷可得出結論.【詳解】,因“”“”且“”“”,因此,“”是“”的必要不充分條件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由已知及等比數(shù)列的通項公式得到首項和公比,再利用前n項和公式計算即可.【詳解】設等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:14、【解析】先求導,求出函數(shù)的單調(diào)遞減區(qū)間,由即可求解.【詳解】,令,得,即的單調(diào)遞減區(qū)間是,又在上單調(diào)遞減,可得,即.故答案為:.15、##0.5【解析】根據(jù)定義直接計算得到答案.【詳解】.故答案為:.16、(1)(2)【解析】(1)由解出,再由前項和為55求得,由等差數(shù)列通項公式即可求解;(2)先求出,再由裂項相消求和即可.【小問1詳解】設公差為,由,,成等比數(shù)列,可得,即有,整理得,數(shù)列的前項和為55,可得,解得1,1,則;【小問2詳解】,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,1【解析】(1)由面面垂直證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,利用空間向量進行求解.【小問1詳解】∵,且D為BC的中點,∴,因為平面平面ABC,交線為BC,AD⊥BC,AD面ABC,所以AD⊥面,因為面,所以.【小問2詳解】假設存在點E,滿足題設要求連接,,∵四邊形為邊長為2的菱形,且,∴為等邊三角形,∵D為BC的中點∴,∵平面平面ABC,交線為BC,面,所以面ABC,故以D為原點,DC,DA,分別為x,y,z軸的空間直角坐標系則,,,,設,,設面AED的一個法向量為,則,令,則設面AEC的一個法向量為,則,令,則設平面EAD與平面EAC的夾角為,則解得:,故點E為中點,所以18、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點可求解;(2)根據(jù)題意分別設出直線MA、MB,與橢圓聯(lián)立后得到相關點的坐標,再通過斜率公式計算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點,則②,由①②解得a=6,b=2,所以橢圓的標準方程為【小問2詳解】設直線MA的斜率為k,點,因為∠AMB的平分線與y軸平行,所以直線MA與MB的斜率互為相反數(shù),則直線MB的斜率為-k.聯(lián)立直線MA與橢圓方程,得整理,得,所以,同理可得,所以,又所以為定值.19、(1)(2)為定值,該定值為2【解析】(1)先根據(jù)焦點形式設出橢圓方程和焦距,根據(jù)橢圓經(jīng)過和半焦距為3易得橢圓的標準方程;(2)設,分別表示出直線方程,進而求得點的縱坐標,點橫坐標,即可表示出,即可求得答案【小問1詳解】由焦點坐標可知,橢圓的焦點在軸上,所以設橢圓:,焦距為,因為橢圓經(jīng)過點,焦點為所以,,解得,所以橢圓的標準方程為;【小問2詳解】設,由橢圓的方程可知,因為,則直線,由已知得,直線斜率均存在,則直線,令得,直線,令得,因為點在第一象限,所以,,則,又因為,即,所以所以為定值,該定值為2.20、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結果.【詳解】若是真命題.則對任意恒成立,∴;若為真命題,則方程有實根,∴,解得或,由題意,真也真,∴或即實數(shù)的取值范圍是或.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年建筑工程銷售合同編號規(guī)則與范本3篇
- 二零二五年新型安保人員派遣合作協(xié)議2篇
- 頭皮裂傷的護理查房
- 個人投資者參股公司規(guī)范合同書版B版
- 2024美容美發(fā)店美容美發(fā)設備更新?lián)Q購合同3篇
- 國慶節(jié)慶典活動策劃
- IT項目管理大學
- 二零二五年度P2P出借平臺投資者權益保護與糾紛解決合同3篇
- 2024版斷橋鋁封窗技術咨詢與服務合同
- 2025年度鋼筋工程審計合同2篇
- 消防報審驗收程序及表格
- 教育金規(guī)劃ppt課件
- 開封辦公樓頂發(fā)光字制作預算單
- 呼吸機波形分析及臨床應用
- 安全生產(chǎn)標準化管理工作流程圖
- 德龍自卸車合格證掃描件(原圖)
- 藥店-醫(yī)療器械組織機構和部門設置說明-醫(yī)療器械經(jīng)營組織機構圖--醫(yī)療器械組織機構圖
- 常用緊固件選用指南
- 自薦書(彩色封面)
- [國家公務員考試密押題庫]申論模擬925
- 高一(4)班分科后第一次班會課件PPT
評論
0/150
提交評論