版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省武威八中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列滿足,,則()A.21 B.42C.63 D.842.在正方體中,,則()A. B.C. D.3.過拋物線的焦點(diǎn)的直線交拋物線于不同的兩點(diǎn),則的值為A.2 B.1C. D.44.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.5.在三棱錐中,平面,,,,Q是邊上的一動(dòng)點(diǎn),且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.6.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)7.已知實(shí)數(shù)、滿足,則的最大值為()A. B.C. D.8.下列雙曲線中,以為一個(gè)焦點(diǎn),以為一個(gè)頂點(diǎn)的雙曲線方程是()A. B.C. D.9.已知向量,,且,,,則一定共線的三點(diǎn)是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D10.已知拋物線:,焦點(diǎn)為,若過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則長(zhǎng)為A.3 B.4C.7 D.1011.函數(shù)在其定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象為A. B.C. D.12.已知雙曲線的右焦點(diǎn)為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的各項(xiàng)均為實(shí)數(shù),其前項(xiàng)和為,若,,則__________.14.已知函數(shù)是上的奇函數(shù),,對(duì),成立,則的解集為_________15.已知數(shù)列的前項(xiàng)和.則數(shù)列的通項(xiàng)公式為_______.16.若數(shù)列的前n項(xiàng)和,則其通項(xiàng)公式________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)其中.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),,滿足,證明.18.(12分)已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點(diǎn),且∠BAD=,求∠ADC的正弦值19.(12分)設(shè)函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當(dāng)時(shí),.20.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.21.(12分)已知數(shù)列的前n項(xiàng)和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項(xiàng)和22.(10分)如圖①,直角梯形中,,,點(diǎn),分別在,上,,,將四邊形沿折起,使得點(diǎn),分別到達(dá)點(diǎn),的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)等比數(shù)列公比為q,根據(jù)給定條件求出即可計(jì)算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D2、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進(jìn)行求解即可.【詳解】因?yàn)?,而,所以有,故選:A3、D【解析】本題首先可以通過直線交拋物線于不同的兩點(diǎn)確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡(jiǎn),最后得出結(jié)果【詳解】因?yàn)橹本€交拋物線于不同的兩點(diǎn),所以直線的斜率存在,設(shè)過拋物線的焦點(diǎn)的直線方程為,由可得,,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點(diǎn)睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過拋物線焦點(diǎn)的直線與拋物線相交的相關(guān)性質(zhì),考查了計(jì)算能力,是中檔題4、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.5、C【解析】由平面,直線與平面所成角的最大時(shí),最小,也即最小,,由此可求得,從而得,得長(zhǎng),然后取外心,作,取H為的中點(diǎn),使得,則易得,求出的長(zhǎng)即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點(diǎn),使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點(diǎn)睛】本題考查求球的表面積,解題關(guān)鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上6、C【解析】命題的逆否命題是將條件和結(jié)論對(duì)換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點(diǎn):四種命題7、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結(jié)合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點(diǎn),代數(shù)式的幾何意義是連接可行域內(nèi)一點(diǎn)與定點(diǎn)連線的斜率,由圖可知,當(dāng)點(diǎn)在可行域內(nèi)運(yùn)動(dòng)時(shí),直線的傾斜角為銳角,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線的傾斜角最大,此時(shí)取最大值,即.故選:A.8、C【解析】設(shè)出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)是,故可設(shè)雙曲線方程為,且;又為一個(gè)頂點(diǎn),故可得,解得,則雙曲線方程為:.故選:.9、A【解析】由已知,分別表示出選項(xiàng)對(duì)應(yīng)的向量,然后利用平面向量共線定理進(jìn)行判斷即可完成求解.【詳解】因,,,選項(xiàng)A,,,若A,B,D三點(diǎn)共線,則,即,解得,故該選項(xiàng)正確;選項(xiàng)B,,,若A,B,C三點(diǎn)共線,則,即,解得不存,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,,,若B,C,D三點(diǎn)共線,則,即,解得不存在,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,,,若A,C,D三點(diǎn)共線,則,即,解得不存在,故該選項(xiàng)錯(cuò)誤;故選:A.10、D【解析】利用拋物線的定義,把的長(zhǎng)轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離的和得解【詳解】解:拋物線:,焦點(diǎn)為,過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則故選D【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.11、D【解析】分析:根據(jù)函數(shù)單調(diào)性、極值與導(dǎo)數(shù)的關(guān)系即可得到結(jié)論.詳解:觀察函數(shù)圖象,從左到右單調(diào)性先單調(diào)遞增,然后單調(diào)遞減,最后單調(diào)遞增.對(duì)應(yīng)的導(dǎo)數(shù)符號(hào)為正,負(fù),正.,選項(xiàng)D的圖象正確.故選D.點(diǎn)睛:本題主要考查函數(shù)圖象的識(shí)別和判斷,函數(shù)單調(diào)性與導(dǎo)數(shù)符號(hào)的對(duì)應(yīng)關(guān)系是解題關(guān)鍵.12、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由,可知為的三等分點(diǎn),用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由到漸近線的距離為,所以,又,所以,因?yàn)?,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】分公比和兩種情況討論,結(jié)合,,即可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,當(dāng),由,,不合題意,當(dāng),由,得,綜上所述.故答案為:1.14、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點(diǎn),最后分類討論即可.【詳解】設(shè),則對(duì),,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;若,則;若,則或,解得或或;則的解集為.故答案為:.15、【解析】根據(jù)公式求解即可.【詳解】解:當(dāng)時(shí),當(dāng)時(shí),因?yàn)橐策m合此等式,所以.故答案為:16、【解析】由和計(jì)算【詳解】由題意,時(shí),,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間,無遞減區(qū)間;(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),從而判斷其正負(fù),確定函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可得到,進(jìn)而變形為,然后換元令,將證明的問題轉(zhuǎn)換為成立的問題,從而構(gòu)造新函數(shù),求新函數(shù)的導(dǎo)數(shù),判斷其單調(diào)性,求其最值,進(jìn)而證明不等式成立.【小問1詳解】時(shí),,,令,當(dāng)時(shí),,當(dāng)時(shí),,故,則,故是單調(diào)遞增函數(shù),即的單調(diào)遞增區(qū)間為,無遞減區(qū)間;【小問2詳解】當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),,滿足,即,所以,則,令,由于,則,則x2=tx故,要證明,只需證明,即證,設(shè),令,則,當(dāng)時(shí),,即在時(shí)為增函數(shù),故,即,所以在時(shí)為增函數(shù),即,即,故,即.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間以及涉及到零點(diǎn)的不等式的證明問題,解答時(shí)要注意導(dǎo)數(shù)的應(yīng)用,主要是根據(jù)導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,進(jìn)而求函數(shù)極值或最值,解答的關(guān)鍵時(shí)對(duì)函數(shù)式或者不等式進(jìn)行合理的變形,進(jìn)而能構(gòu)造新的函數(shù),利用新的函數(shù)的單調(diào)性或最值達(dá)到證明不等式成立的目的m.18、(1)(2)【解析】(1)利用面積公式及余弦定理可求解;(2)由正弦定理得到,再運(yùn)用同角函數(shù)的關(guān)系得到,最后運(yùn)用正弦的兩角和公式求解即可.【小問1詳解】∵,,,∴由余弦定理:,∴【小問2詳解】在中,由正弦定理得,∴,易知B為銳角,∴,∴19、(1)答案見解析(2)答案見解析【解析】(1)求導(dǎo)數(shù),分和,兩種情況討論,即可求得的單調(diào)性;(2)令,利用導(dǎo)數(shù)求得單調(diào)遞增,結(jié)合,得到,進(jìn)而證得.【詳解】(1)由函數(shù),可得,當(dāng)時(shí),,在內(nèi)單調(diào)遞減;當(dāng)時(shí),由有,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)證明:令,則,當(dāng)時(shí),,單調(diào)遞增,因?yàn)?,所以,即,?dāng)時(shí),可得,即【點(diǎn)睛】利用導(dǎo)數(shù)證明不等式常見類型及解題策略(1)構(gòu)造差函數(shù).根據(jù)差函數(shù)導(dǎo)函數(shù)符號(hào),確定差函數(shù)單調(diào)性,利用單調(diào)性得不等量關(guān)系,進(jìn)而證明不等式.(2)根據(jù)條件,尋找目標(biāo)函數(shù).一般思路為利用條件將求和問題轉(zhuǎn)化為對(duì)應(yīng)項(xiàng)之間大小關(guān)系,或利用放縮、等量代換將多元函數(shù)轉(zhuǎn)化為一元函數(shù).20、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導(dǎo)函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.21、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關(guān)系,利用求解出數(shù)列的首項(xiàng),然后當(dāng)時(shí),遞推做差,利用消掉,即可得到與之間的關(guān)系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項(xiàng)公式,帶入到中,再使用錯(cuò)位相減法進(jìn)行求和,根據(jù)最后計(jì)算的結(jié)果與比較即可完成證明.【小問1詳解】由題意得,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∵,∴,于是有,故數(shù)列是以3為首項(xiàng),3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.22、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進(jìn)而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量和平面的一個(gè)法向量,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北藝術(shù)職業(yè)學(xué)院《模具CAD-CAM》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度食品檢測(cè)設(shè)備銷售合同范本
- 2025年技術(shù)轉(zhuǎn)讓合同技術(shù)標(biāo)的詳細(xì)描述2篇
- 紅河云南紅河蒙自經(jīng)濟(jì)技術(shù)開發(fā)區(qū)消防救援大隊(duì)招收專職消防員20人筆試歷年參考題庫附帶答案詳解
- 2025年度物聯(lián)網(wǎng)解決方案行銷合同3篇
- 玉溪云南玉溪澄江市教育體育系統(tǒng)招聘2025年畢業(yè)生9人(第二次)筆試歷年參考題庫附帶答案詳解
- 江蘇2025年江蘇建筑職業(yè)技術(shù)學(xué)院湖西校區(qū)招聘人事代理工作人員26人筆試歷年參考題庫附帶答案詳解
- 2025年房產(chǎn)及土地使用權(quán)受贈(zèng)合同3篇
- 合肥2024年安徽合肥廬江縣社區(qū)工作者招聘56人筆試歷年參考題庫附帶答案詳解
- 三明2024年福建三明市第二醫(yī)院(三明市永安總醫(yī)院)招聘23人筆試歷年參考題庫附帶答案詳解
- 2023年河南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 2024年安徽省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 山西省太原市重點(diǎn)中學(xué)2025屆物理高一第一學(xué)期期末統(tǒng)考試題含解析
- 充電樁項(xiàng)目運(yùn)營(yíng)方案
- 2024年農(nóng)民職業(yè)農(nóng)業(yè)素質(zhì)技能考試題庫(附含答案)
- 高考對(duì)聯(lián)題(對(duì)聯(lián)知識(shí)、高考真題及答案、對(duì)應(yīng)練習(xí)題)
- 新版《鐵道概論》考試復(fù)習(xí)試題庫(含答案)
- 【律師承辦案件費(fèi)用清單】(計(jì)時(shí)收費(fèi))模板
- 高中物理競(jìng)賽真題分類匯編 4 光學(xué) (學(xué)生版+解析版50題)
- Unit1FestivalsandCelebrations詞匯清單高中英語人教版
- 2024年上海市中考語文試題卷(含答案)
評(píng)論
0/150
提交評(píng)論