版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
上海市上外附大境中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)分別為圓和橢圓上的點(diǎn),則兩點(diǎn)間的最大距離是A. B.C. D.2.雙曲線的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點(diǎn)P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為323.已知數(shù)列滿足,則()A.32 B.C.1320 D.4.若圓上至少有三個(gè)點(diǎn)到直線的距離為1,則半徑的取值范圍是()A. B.C. D.5.在各項(xiàng)都為正數(shù)的數(shù)列中,首項(xiàng)為數(shù)列的前項(xiàng)和,且,則()A. B.C. D.6.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.27.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”8.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.若直線與曲線只有一個(gè)公共點(diǎn),則m的取值范圍是()A. B.C.或 D.或10.已知曲線,則曲線W上的點(diǎn)到原點(diǎn)距離的最小值是()A. B.C. D.11.直線被圓截得的弦長為()A.1 B.C.2 D.312.設(shè)是區(qū)間上的連續(xù)函數(shù),且在內(nèi)可導(dǎo),則下列結(jié)論中正確的是()A.的極值點(diǎn)一定是最值點(diǎn)B.的最值點(diǎn)一定是極值點(diǎn)C.在區(qū)間上可能沒有極值點(diǎn)D.在區(qū)間上可能沒有最值點(diǎn)二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的各項(xiàng)均為實(shí)數(shù),其前項(xiàng)和為,若,,則__________.14.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點(diǎn)到漸近線的距離為__________.15.我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了一個(gè)原理“冪勢既同,則積不容異”,即夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.現(xiàn)有某幾何體和一個(gè)圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,則該幾何體的體積為________.16.過拋物線的焦點(diǎn)作傾斜角為的直線,與拋物線分別交于兩點(diǎn)(點(diǎn)在軸上方),_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點(diǎn)E為的中點(diǎn).(1)證明:平面;(2)求二面角的余弦值.18.(12分)已知等差數(shù)列的前項(xiàng)和為,,.(1)求的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,用符號表示不超過x的最大數(shù),當(dāng)時(shí),求的值.19.(12分)平行六面體,(1)若,,,,,,求長;(2)若以頂點(diǎn)A為端點(diǎn)的三條棱長均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值20.(12分)已知數(shù)列滿足,,且成等比數(shù)列(1)求的值和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)如圖,在長方體中,,點(diǎn)E在棱上運(yùn)動(1)證明:;(2)當(dāng)E為棱的中點(diǎn)時(shí),求直線與平面所成角的正弦值;(3)等于何值時(shí),二面角的大小為?22.(10分)已知橢圓的焦距為,左、右焦點(diǎn)分別為,為橢圓上一點(diǎn),且軸,,為垂足,為坐標(biāo)原點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點(diǎn)的直線(斜率不為)與橢圓交于兩點(diǎn),為軸正半軸上一點(diǎn),且,求點(diǎn)的坐標(biāo)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】轉(zhuǎn)化為圓心到橢圓上點(diǎn)的距離的最大值加(半徑).【詳解】設(shè),圓心為,則,當(dāng)時(shí),取到最大值,∴最大值為故選:D.【點(diǎn)睛】本題考查圓上點(diǎn)與橢圓上點(diǎn)的距離的最值問題,解題關(guān)鍵是圓上的點(diǎn)轉(zhuǎn)化為圓心,利用圓心到動點(diǎn)距離的最值加(或減)半徑得出結(jié)論2、D【解析】根據(jù)雙曲線的離心率、漸近線、點(diǎn)到直線距離公式、三角形的面積等知識來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯誤.故選:D3、A【解析】先令,求出,再當(dāng)時(shí),由,可得,然后兩式相比,求出,從而可求出,進(jìn)而可求得答案【詳解】當(dāng)時(shí),,當(dāng)時(shí),由,可得,兩式相除可得,所以,所以,故選:A4、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時(shí),圓上恰有三點(diǎn)到直線的距離為,當(dāng)圓的半徑時(shí),圓上恰有四個(gè)點(diǎn)到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個(gè)點(diǎn)到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.5、C【解析】當(dāng)時(shí),,故可以得到,因?yàn)?,進(jìn)而得到,所以是等比數(shù)列,進(jìn)而求出【詳解】由,得,得,又?jǐn)?shù)列各項(xiàng)均為正數(shù),且,∴,∴,即∴數(shù)列是首項(xiàng),公比的等比數(shù)列,其前項(xiàng)和,得,故選:C.6、A【解析】先求出,利用等比中項(xiàng)求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當(dāng)時(shí),,不符合等比數(shù)列的定義,應(yīng)舍去,故.故選:A.7、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個(gè)量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個(gè)為真命題,當(dāng)二者為一真一假時(shí),為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C8、D【解析】根據(jù)復(fù)數(shù)在復(fù)平面內(nèi)的坐標(biāo)表示可得答案.【詳解】解:由題意得:在復(fù)平面上對應(yīng)的點(diǎn)為,該點(diǎn)在第四象限.故選:D9、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個(gè)特殊位置,當(dāng)已知直線位于直線位置時(shí),把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時(shí)對應(yīng)的的值;當(dāng)已知直線位于直線及直線的位置時(shí),分別求出對應(yīng)的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當(dāng)直線在直線的位置時(shí),直線與橢圓相切,故只有一個(gè)交點(diǎn),把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時(shí),直線與曲線只有一個(gè)公共點(diǎn);當(dāng)直線在直線位置時(shí),直線與曲線剛好有兩個(gè)交點(diǎn),此時(shí),當(dāng)直線在直線位置時(shí),直線與曲線只有一個(gè)公共點(diǎn),此時(shí),則當(dāng)時(shí),直線與曲線只有一個(gè)公共點(diǎn),綜上,滿足題意得的范圍是或故選:D10、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點(diǎn)距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點(diǎn)與點(diǎn)或的距離最小,且為故選:A11、C【解析】利用直線和圓相交所得的弦長公式直接計(jì)算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.12、C【解析】根據(jù)連續(xù)函數(shù)的極值和最值的關(guān)系即可判斷【詳解】根據(jù)函數(shù)的極值與最值的概念知,的極值點(diǎn)不一定是最值點(diǎn),的最值點(diǎn)不一定是極值點(diǎn).可能是區(qū)間的端點(diǎn),連續(xù)可導(dǎo)函數(shù)在閉區(qū)間上一定有最值,所以選項(xiàng)A,B,D都不正確,若函數(shù)在區(qū)間上單調(diào),則函數(shù)在區(qū)間上沒有極值點(diǎn),所以C正確故選:C.【點(diǎn)睛】本題主要考查函數(shù)的極值與最值的概念辨析,屬于容易題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】分公比和兩種情況討論,結(jié)合,,即可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,當(dāng),由,,不合題意,當(dāng),由,得,綜上所述.故答案為:1.14、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點(diǎn)為,應(yīng)用點(diǎn)線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時(shí),,則雙曲線為,故右焦點(diǎn)為,所以右焦點(diǎn)到漸近線的距離為.故答案為:,3.15、【解析】根據(jù)圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,由,求得底面半徑,進(jìn)而得到高,再利用錐體的體積公式求解.【詳解】設(shè)圓錐的母線長為l,高為h,底面半徑為r,因?yàn)閳A錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:16、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點(diǎn)O為原點(diǎn),OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點(diǎn)F,連接EF,F(xiàn)C﹒∵E是AP中點(diǎn),∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點(diǎn)O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點(diǎn),OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒18、(1)(2)9【解析】(1)首先根據(jù)已知條件分別求出的首項(xiàng)和公差,然后利用等差數(shù)列的通項(xiàng)公式求解即可;(2)首先利用等差數(shù)列求和公式求出,然后利用裂項(xiàng)相消法和分組求和法求出,進(jìn)而可求出的通項(xiàng)公式,最后利用等差數(shù)列求和公式求解即可.【小問1詳解】不妨設(shè)等差數(shù)列的公差為,故,,解得,,從而,即的通項(xiàng)公式為.【小問2詳解】由題意可知,,所以,故,因?yàn)楫?dāng)時(shí),;當(dāng)時(shí),,所以,由可知,,即,解得,即值為9.19、(1);(2).【解析】(1)由,可得,再利用數(shù)量積運(yùn)算性質(zhì)即可得出;(2)以為一組基底,設(shè)與所成的角為,由求解.【小問1詳解】,,,,∴,;【小問2詳解】∵,,∴,∵,∴,∵=8,∴,設(shè)與所成的角為,則.20、(1);;(2)【解析】(1)由于,所以可得,再由成等比數(shù)列,列方程可求出,從而可求出的通項(xiàng)公式;(2)由(1)可得,然后利用錯位相減法求【詳解】解:(1)數(shù)列{an}滿足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比數(shù)列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇數(shù)時(shí),an=n,n為偶數(shù)時(shí),an=n﹣1所以數(shù)列{an}的通項(xiàng)公式為(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2?(2n﹣1)2]+22n﹣2?(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2?[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2?(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以21、(1)證明見解析;(2);(3).【解析】(1)連接、,長方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設(shè)易知二面角為,過作于,連接,可得二面角平面角為,令,由長方體的性質(zhì)及勾股定理構(gòu)造方程求即可.【小問1詳解】由題設(shè),連接、,又長方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點(diǎn),則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿(mào)大學(xué)南國商學(xué)院《理化檢測下》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東輕工職業(yè)技術(shù)學(xué)院《景觀設(shè)計(jì)快題》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東農(nóng)工商職業(yè)技術(shù)學(xué)院《行政管理專業(yè)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東梅州職業(yè)技術(shù)學(xué)院《影視編劇》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名幼兒師范專科學(xué)?!禞SP程序設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 四年級數(shù)學(xué)(四則混合運(yùn)算)計(jì)算題專項(xiàng)練習(xí)與答案
- 國學(xué)智慧(東北師范大學(xué))學(xué)習(xí)通測試及答案
- 2025新北師大版英語七年級下單詞表
- 【名師一號】2020-2021學(xué)年新課標(biāo)版物理選修3-1-第二章恒定電流-測試
- 【名師一號】2020-2021學(xué)年高中英語北師大版必修4-隨堂演練-第十二單元綜合測評
- 工程開工報(bào)審表范本
- 航空小鎮(zhèn)主題樂園項(xiàng)目規(guī)劃設(shè)計(jì)方案
- 保潔冬季防滑防凍工作措施
- 少兒美術(shù)課件-《我的情緒小怪獸》
- 永續(xù)債計(jì)入權(quán)益的必備條件分析
- 預(yù)應(yīng)力鋼絞線張拉伸長量計(jì)算程序單端(自動版)
- 基坑監(jiān)測課件ppt版(共155頁)
- 蠕變、應(yīng)力松弛、滯后和內(nèi)耗講解
- 開發(fā)區(qū)開發(fā)管理模式及發(fā)展要素PPT課件
- 急診科科主任述職報(bào)告范文
- 基于MATLAB語音信號降噪處理
評論
0/150
提交評論