版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
新疆烏魯木齊地區(qū)2025屆高一上數(shù)學期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設函數(shù),A.3 B.6C.9 D.122.“”是函數(shù)滿足:對任意的,都有”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知函數(shù)的部分圖象如圖所示,則下列說法正確的是()A.該圖象對應的函數(shù)解析式為B.函數(shù)的圖象關于直線對稱C.函數(shù)的圖象關于點對稱D.函數(shù)在區(qū)間上單調(diào)遞減4.若,求()A. B.C. D.5.將函數(shù)y=cosx+sinx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關于y軸對稱,則m的最小值是()A. B.C. D.6.如果,那么()A. B.C. D.7.將函數(shù),且,下列說法錯誤的是()A.為偶函數(shù) B.C.若在上單調(diào)遞減,則的最大值為9 D.當時,在上有3個零點8.若的外接圓的圓心為O,半徑為4,,則在方向上的投影為()A.4 B.C. D.19.已知,,,則的大小關系為()A. B.C. D.10.已知,,,則()A. B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.如果函數(shù)僅有一個零點,則實數(shù)的值為______12.已知在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是____________.13.已知函數(shù)(為常數(shù))的一條對稱軸為,若,且滿足,在區(qū)間上是單調(diào)函數(shù),則的最小值為__________.14.若函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,則實數(shù)的取值范圍是_________15.已知函數(shù),且關于的方程有且僅有一個實數(shù)根,那實數(shù)的取值范圍為________16.已知A(3,0),B(0,4),直線AB上一動點P(x,y),則xy的最大值是___.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.定義在上的奇函數(shù),已知當時,求實數(shù)a的值;求在上解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍18.已知函數(shù)(I)求函數(shù)圖象的對稱軸方程;(II)求函數(shù)的最小正周期和值域.19.已知函數(shù)(,且).(1)判斷函數(shù)的奇偶性,并予以證明;(2)求使的x的取值范圍.20.已知函數(shù)為定義在R上的奇函數(shù).(1)求實數(shù)a的值;(2)判斷函數(shù)的單調(diào)性,并證明;21.求值:(1);(2)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】.故選C.2、A【解析】當時,在上遞減,在遞減,且在上遞減,任意都有,充分性成立;若在上遞減,在上遞增,任意,都有,必要性不成立,“”是函數(shù)滿足:對任意的,都有”的充分不必要條件,故選A.3、B【解析】先依據(jù)圖像求得函數(shù)的解析式,再去代入驗證對稱軸、對稱中心、單調(diào)區(qū)間的說法.【詳解】由圖象可知,即,所以,又,可得,又因為所以,所以,故A錯誤;當時,.故B正確;當時,,故C錯誤;當時,則,函數(shù)不單調(diào)遞減.故D錯誤故選:B4、A【解析】根據(jù),求得,再利用指數(shù)冪及對數(shù)的運算即可得出答案.【詳解】解:因為,所以,所以.故選:A.5、A【解析】由題意結(jié)合輔助角公式可得,進而可得g(x)=2sin,由三角函數(shù)的性質(zhì)可得,化簡即可得解.【詳解】設f(x)=cosx+sinx=2sin,向左平移m個單位長度得g(x)=2sin,∵g(x)的圖象關于y軸對稱,∴,∴m=,由m>0可得m的最小值為.故選:A.【點睛】本題考查了輔助角公式及三角函數(shù)圖象與性質(zhì)的應用,考查了運算求解能力,屬于基礎題.6、D【解析】利用對數(shù)函數(shù)的單調(diào)性,即可容易求得結(jié)果.【詳解】因為是單調(diào)減函數(shù),故等價于故選:D【點睛】本題考查利用對數(shù)函數(shù)的單調(diào)性解不等式,屬基礎題.7、C【解析】先求得,然后結(jié)合函數(shù)的奇偶性、單調(diào)性、零點對選項進行分析,從而確定正確選項.【詳解】,,所以,為偶函數(shù),A選項正確.,B選項正確.,若在上單調(diào)遞減,則,,由于,所以,所以的最大值為,的最大值為,C選項錯誤.當時,,,當時,,所以D選項正確.故選:C8、C【解析】過作的垂線,垂足為,分析條件可得,作出圖分析結(jié)合投影的幾何意義可進而可求得投影..【詳解】過作的垂線,垂足為,則M為BC的中點,連接AM,由,可得,所以三點共線,即有,且.所以.在方向上的投影為,故選:C.9、A【解析】由題,,,所以的大小關系為.故選A.點晴:本題考查的是對數(shù)式的大小比較.解決本題的關鍵是利用對數(shù)函數(shù)的單調(diào)性比較大小,當對數(shù)函數(shù)的底數(shù)大于0小于1時,對數(shù)函數(shù)是單調(diào)遞減的,當?shù)讛?shù)大于1時,對數(shù)函數(shù)是單調(diào)遞增的;另外由于對數(shù)函數(shù)過點(1,0),所以還經(jīng)常借助特殊值0,1,2等比較大小.10、D【解析】利用同角三角函數(shù)關系式可求,再應用和角正切公式即求.【詳解】∵,,∴,,∴.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用即可得出.【詳解】函數(shù)僅有一個零點,即方程只有1個根,,解得.故答案為:.12、【解析】根據(jù)復合函數(shù)單調(diào)性的判斷方法,結(jié)合對數(shù)函數(shù)的定義域,即可求得的取值范圍.【詳解】在區(qū)間上單調(diào)遞減由對數(shù)部分為單調(diào)遞減,且整個函數(shù)單調(diào)遞減可知在上單調(diào)遞增,且滿足所以,解不等式組可得即滿足條件的取值范圍為故答案為:【點睛】本題考查了復合函數(shù)單調(diào)性的應用,二次函數(shù)的單調(diào)性,對數(shù)函數(shù)的性質(zhì),屬于中檔題.13、【解析】根據(jù)是的對稱軸可取得最值,即可求出的值,進而可得的解析式,再結(jié)合對稱中心的性質(zhì)即可求解.【詳解】因為是的對稱軸,所以,化簡可得:,即,所以,有,,可得,,因為,且滿足,在區(qū)間上是單調(diào)函數(shù),又因為對稱中心,所以,當時,取得最小值.故答案為:.14、【解析】反比例函數(shù)在區(qū)間上單調(diào)遞減,要使函數(shù)在區(qū)間上單調(diào)遞減,則,還要滿足在上單調(diào)遞增,故求出結(jié)果【詳解】函數(shù)根據(jù)反比例函數(shù)的性質(zhì)可得:在區(qū)間上單調(diào)遞減要使函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在上單調(diào)遞增則,解得故實數(shù)的取值范圍是【點睛】本題主要考查了函數(shù)單調(diào)性的性質(zhì),需要注意反比例函數(shù)在每個象限內(nèi)是單調(diào)遞減的,而在定義域內(nèi)不是單調(diào)遞減的15、【解析】利用數(shù)形結(jié)合的方法,將方程根的問題轉(zhuǎn)化為函數(shù)圖象交點的問題,觀察圖象即可得到結(jié)果.【詳解】作出的圖象,如下圖所示:∵關于的方程有且僅有一個實數(shù)根,∴函數(shù)的圖象與有且只有一個交點,由圖可知,則實數(shù)的取值范圍是.故答案為:.16、3【解析】直線AB的方程為+=1,又∵+≥2,即2≤1,當x>0,y>0時,當且僅當=,即x=,y=2時取等號,∴xy≤3,則xy的最大值是3.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當時,,求出的解析式,結(jié)合函數(shù)的奇偶性分析可得答案;根據(jù)題意,若存在,使得成立,即在有解,變形可得在有解設,分析的單調(diào)性可得的最大值,從而可得結(jié)果【詳解】根據(jù)題意,是定義在上的奇函數(shù),則,得經(jīng)檢驗滿足題意;故;根據(jù)題意,當時,,當時,,又是奇函數(shù),則綜上,當時,;根據(jù)題意,若存在,使得成立,即在有解,即在有解又由,則在有解設,分析可得在上單調(diào)遞減,又由時,,故即實數(shù)m的取值范圍是【點睛】本題考查函數(shù)的奇偶性的應用,以及指數(shù)函數(shù)單調(diào)性的應用,屬于綜合題18、(I)(II)周期為,值域為【解析】(I)化簡得,進而可求解(II)化簡,進而可求解【詳解】(I)因為,,所以,由得,對稱軸為(II)因為,所以,,周期為,值域為【點睛】方法點睛:需要利用三角公式“化一”,進一步研究正弦型函數(shù)的圖象和性質(zhì),達到解題目的19、(1)是奇函數(shù),證明見解析;(2).【解析】(1)先根據(jù)對數(shù)函數(shù)的定義得函數(shù)的定義域關于原點對稱,再根據(jù)函數(shù)的奇偶性定義判斷即可;(2)由已知條件得,再分與兩種情況討論,結(jié)合對數(shù)函數(shù)的單調(diào)性列出不等式組,求出x的取值范圍即可.【詳解】(1)函數(shù)是奇函數(shù).證明:要使函數(shù)的解析式有意義,需的解析式都有意義,即解得,所以函數(shù)的定義域是,所以函數(shù)的定義域關于原點對稱.因為所以函數(shù)是奇函數(shù).(2)若,即.當時,有解得;當時,有解得,綜上所述,當時,x的取值范圍是,當時,x的取值范圍是.【點睛】該題考查的是有關函數(shù)的問題,涉及到的知識點有本題函數(shù)的奇偶性的判斷與證明、對數(shù)函數(shù)的單調(diào)性、根據(jù)單調(diào)性解不等式,不用對參數(shù)進行討論,屬于中檔題目.20、(1);(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級英語Whatisyourfavorite課件
- 駕考題庫-70歲以上老年人C2駕照年審三力測試題
- 《證券銷戶寶典》課件
- 單位管理制度集粹選集【職工管理篇】十篇
- 2024服務合同范文(32篇)
- 單位管理制度合并選集【人員管理】
- 單位管理制度范例選集人事管理十篇
- 七年級英語Nationalheroes課件
- 3ds Max動畫制作實戰(zhàn)訓練(第3版)教學教案
- 2024年醫(yī)院個人工作總結(jié)范文
- 2024廣東省基本醫(yī)療保險門診特定病種業(yè)務經(jīng)辦規(guī)程-申請表
- 2023年輔導員職業(yè)技能大賽試題及答案
- 講師與教育平臺合作合同
- 2025屆江蘇省丹陽市丹陽高級中學高一數(shù)學第一學期期末統(tǒng)考試題含解析
- 汽車保險與理賠課件 3.4認識新能源汽車車上人員責任保險
- GB/T 33629-2024風能發(fā)電系統(tǒng)雷電防護
- 建筑工程施工現(xiàn)場安全檢查手冊
- 小學英語語法練習模擬試卷
- 高標準農(nóng)田建設項目安全文明施工方案
- 2024-2025學年一年級上冊數(shù)學北師大版4.6《挖紅薯》(教學設計)
- 糖尿病患者體重管理專家共識(2024年版)解讀
評論
0/150
提交評論