2025屆山東省濰坊市普通高中數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第1頁
2025屆山東省濰坊市普通高中數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第2頁
2025屆山東省濰坊市普通高中數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第3頁
2025屆山東省濰坊市普通高中數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第4頁
2025屆山東省濰坊市普通高中數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省濰坊市普通高中數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A. B.C. D.2.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題3.設(shè)實(shí)系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實(shí)系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.44.已知橢圓的左右焦點(diǎn)分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.5.△ABC的兩個頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.6.已知,為雙曲線:的焦點(diǎn),為,(其中為雙曲線半焦距),與雙曲線的交點(diǎn),且有,則該雙曲線的離心率為()A. B.C. D.7.已知1與5的等差中項是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.68.某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數(shù)為()A.167 B.137C.123 D.1139.?dāng)?shù)列,,,,…的一個通項公式為()A. B.C. D.10.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.11.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.12.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為的球的表面積為_______14.已知命題恒成立;,若p,均為真,則實(shí)數(shù)a的取值范圍__________15.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機(jī)抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________16.已知正三棱臺上、下底面邊長分別為1和2,高為1,則這個正三棱臺的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F(xiàn),G分別為線段AD,DC,PB的中點(diǎn).(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.18.(12分)已知橢圓的左、右兩個焦點(diǎn),,離心率,短軸長為21求橢圓的方程;2如圖,點(diǎn)A為橢圓上一動點(diǎn)非長軸端點(diǎn),的延長線與橢圓交于B點(diǎn),AO的延長線與橢圓交于C點(diǎn),求面積的最大值19.(12分)已知拋物線的焦點(diǎn)與曲線的右焦點(diǎn)重合.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線上的點(diǎn)滿足,求點(diǎn)的坐標(biāo).20.(12分)某校高二年級共有男生490人和女生510人,現(xiàn)采用分層隨機(jī)抽樣的方法從該校高二年級中抽取100名學(xué)生,測得他們的身高數(shù)據(jù)(1)男生和女生應(yīng)各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請估計該校高二年級學(xué)生的平均身高21.(12分)已知圓內(nèi)有一點(diǎn),過點(diǎn)P作直線l交圓C于A,B兩點(diǎn).(1)當(dāng)P為弦的中點(diǎn)時,求直線l的方程;(2)若直線l與直線平行,求弦的長.22.(10分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)函數(shù)的單調(diào)性,可知其導(dǎo)數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調(diào)遞增,則在R上恒成立,可得恒成立,當(dāng)時,取最小值-1,故,故選:D2、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D3、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應(yīng)系數(shù)相等得:,.故選:A.【點(diǎn)睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.4、C【解析】根據(jù)題意求出P點(diǎn)坐標(biāo),代入橢圓方程中,可整理得到關(guān)于a,c的等式,進(jìn)一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點(diǎn)坐標(biāo)為,將P點(diǎn)坐標(biāo)為代入得:,整理得,故,由于,解得,所以,故選:C.5、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因為,所以,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動點(diǎn)的軌跡方程,求解時,注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.6、B【解析】根據(jù)求得的關(guān)系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關(guān)系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點(diǎn)在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.7、A【解析】由等差中項的概念列式求得值,再由等比數(shù)列的通項公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.8、C【解析】根據(jù)圖形分別求出初中部和高中部男教師的人數(shù),最后相加即可.【詳解】初中部男教師的人數(shù)為110×(170%)=33;高中部男教師的人數(shù)為150×60%=90,∴該校男教師的人數(shù)為33+90=123.故選:C.9、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B10、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.11、A【解析】根據(jù)空間向量的線性運(yùn)算法則——三角形法,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.12、D【解析】焦點(diǎn)三角形問題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】由球的表面積公式計算【詳解】由題意.故答案為:14、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實(shí)數(shù)a的取值范圍為.故答案為:.15、【解析】,所以抽到穿白色衣服的選手號碼為,共16、【解析】先計算兩個底面的面積,再由體積公式計算即可.【詳解】上底面的面積為,下底面的面積為,則這個正三棱臺的體積為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接EC,設(shè)EB與AC相交于點(diǎn)O,結(jié)合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結(jié)合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進(jìn)而可證得結(jié)論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點(diǎn),AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用空間向量求解即可【小問1詳解】證明:連接EC,設(shè)EB與AC相交于點(diǎn)O,如圖,因為BC//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O(shè)為EB的中點(diǎn),又因為G為PB的中點(diǎn),所以O(shè)G為△PBE的中位線,即OG∥PE,因為OG平面PEF,PE?平面PEF,所以O(shè)G//平面PEF,因為E,F(xiàn)分別為線段AD,DC的中點(diǎn),所以EF//AC,因為AC平面PEF,EF?平面PEF,所以AC//平面PEF,因為OG?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因為PF?平面PEF,所以PF//平面GAC.【小問2詳解】因為PA⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因為AB⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點(diǎn),AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設(shè)平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設(shè)直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.18、(1)橢圓的標(biāo)準(zhǔn)方程為(2)面積的最大值為【解析】(1)由題意得,再由,標(biāo)準(zhǔn)方程為;(2)①當(dāng)?shù)男甭什淮嬖跁r,不妨??;②當(dāng)?shù)男甭蚀嬖跁r,設(shè)的方程為,聯(lián)立方程組,又直線的距離點(diǎn)到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時,不妨取,故;②當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組,化簡得,設(shè)點(diǎn)到直線的距離因為是線段的中點(diǎn),所以點(diǎn)到直線的距離為,∴綜上,面積的最大值為.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離、弦長公式和三角形面積公式等知識,涉及函數(shù)與方程思想、數(shù)形結(jié)合思想分類與整合、轉(zhuǎn)化與化歸等思想,并考查運(yùn)算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標(biāo)準(zhǔn)方程為;(2)利用分類與整合思想分當(dāng)?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時,由舍而不求法求得,再求得點(diǎn)到直線的距離為面積的最大值為.19、(1);(2)或.【解析】(1)求出雙曲線的右焦點(diǎn)坐標(biāo),可求出的值,即可得出拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),由拋物線的定義求出的值,代入拋物線的方程可求得的值,即可得出點(diǎn)的坐標(biāo).【詳解】(1)由雙曲線方程可得,,所以,解得.則曲線的右焦點(diǎn)為,所以,.因此,拋物線的標(biāo)準(zhǔn)方程為;(2)設(shè),由拋物線的定義及已知可得,解得.代入拋物線方程可得,解得,所以點(diǎn)的坐標(biāo)為或.20、(1)應(yīng)抽取男生49人,女生51人;(2).【解析】(1)利用分層抽樣計算男生和女生應(yīng)抽取的人數(shù);(2)利用平均數(shù)的計算公式計算求解.【小問1詳解】解:應(yīng)抽取男生人,女生應(yīng)抽取100-49=51人.【小問2詳解】解:估計該校高二年級學(xué)生的平均身高為.21、(1)(2)【解析】(1)由題意,,求出直線l的斜率,利用點(diǎn)斜式即可求解;(2)由題意,利用點(diǎn)斜式求出直線l的方程,然后由點(diǎn)到直線的距離公式求出弦心距,最后根據(jù)弦長公式即可求解.小問1詳解】解:由題意,圓心,P為弦的中點(diǎn)時,由圓的性質(zhì)有,又,所以,所以直線l的方程為,即;【小問2詳解】解:因為直線l與直線平行,所以,所以直線的方程為,即,因為圓心到直線的距離,又半徑,所以由弦長公式得.22、(1)證明見解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論