版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省綠春縣二中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某校高二年級(jí)統(tǒng)計(jì)了參加課外興趣小組的學(xué)生人數(shù),每人只參加一類,數(shù)據(jù)如下表:學(xué)科類別文學(xué)新聞經(jīng)濟(jì)政治人數(shù)400300100200若從參加課外興趣小組的學(xué)生中采用分層抽樣的方法抽取50名參加學(xué)習(xí)需求的問(wèn)卷調(diào)查,則從文學(xué)、新聞、經(jīng)濟(jì)、政治四類興趣小組中抽取的學(xué)生人數(shù)分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,102.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為3,準(zhǔn)線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.3.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.334.若拋物線焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.5.若,則x的值為()A.4 B.6C.4或6 D.86.直線與曲線相切于點(diǎn),則()A. B.C. D.7.為了防控新冠病毒肺炎疫情,某市疾控中心檢測(cè)人員對(duì)外來(lái)入市人員進(jìn)行核酸檢測(cè),人員甲、乙均被檢測(cè).設(shè)命題為“甲核酸檢測(cè)結(jié)果為陰性”,命題為“乙核酸檢測(cè)結(jié)果為陰性”,則命題“至少有一位人員核酸檢測(cè)結(jié)果不是陰性”可表示為()A. B.C. D.8.若圓與直線相切,則()A.3 B.或3C. D.或9.下列求導(dǎo)不正確的是()A B.C. D.10.如下圖,邊長(zhǎng)為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點(diǎn),下列說(shuō)法錯(cuò)誤的是()A. B.C. D.到平面MON的距離為111.已知橢圓的離心率為,左、右焦點(diǎn)分別為、,過(guò)作軸的平行線交橢圓于、兩點(diǎn),為坐標(biāo)原點(diǎn),雙曲線的虛軸長(zhǎng)為,且以、為頂點(diǎn),以直線、為漸近線,則橢圓的短軸長(zhǎng)為()A. B.C. D.12.已知,,,則的大小關(guān)系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長(zhǎng)的2倍,則異面直線AC與BD所成角的余弦值為______14.已知曲線,則曲線在點(diǎn)處的切線方程為____________.15.已知三角形OAB頂點(diǎn),,,則過(guò)B點(diǎn)的中線長(zhǎng)為______.16.設(shè),,若將函數(shù)的圖像向左平移個(gè)單位能使其圖像與原圖像重合,則正實(shí)數(shù)的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)分別求出滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)焦點(diǎn)在y軸,短軸長(zhǎng)為2,離心率為;(2)短軸一端點(diǎn)P與兩焦點(diǎn),連線所構(gòu)成的三角形為等邊三角形18.(12分)已知等差數(shù)列滿足(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和19.(12分)已知甲射擊的命中率為0.7.乙射擊的命中率為0.8,甲乙兩人的射擊互相獨(dú)立.求:(1)甲乙兩人同時(shí)擊中目標(biāo)的概率;(2)甲乙兩人中至少有一個(gè)人擊中目標(biāo)的概率;(3)甲乙兩人中恰有一人擊中目標(biāo)的概率20.(12分)為了了解高一年級(jí)學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長(zhǎng)方形面積之比為2∶4∶17∶15∶9∶3,第二小組的頻數(shù)為12(1)第二小組的頻率是多少?樣本量是多少?(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),則該校全體高一年級(jí)學(xué)生的達(dá)標(biāo)率是多少?(3)樣本中不達(dá)標(biāo)的學(xué)生人數(shù)是多少?(4)第三組的頻數(shù)是多少?21.(12分)如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,(1)求證:;(2)求直線與平面所成角的正弦值;(3)線段上是否存在點(diǎn),使得直線平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由22.(10分)已知數(shù)列滿足,,數(shù)列前項(xiàng)和為.(1)求數(shù)列,的通項(xiàng)公式;(2)表示不超過(guò)的最大整數(shù),如,設(shè)的前項(xiàng)和為,令,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用分層抽樣的等比例性質(zhì)求抽取的樣本中所含各小組的人數(shù).【詳解】根據(jù)分層抽樣的等比例性質(zhì)知:文學(xué)小組抽取人數(shù)為人;新聞小組抽取人數(shù)為人;經(jīng)濟(jì)小組抽取人數(shù)為人;政治小組抽取人數(shù)為人;故選:D.2、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準(zhǔn)線方程,則可求出準(zhǔn)線l與兩條漸近線的交點(diǎn)分別為,然后由題意可得,進(jìn)而可求出雙曲線的離心率詳解】依題意,拋物線準(zhǔn)線,由拋物線定義知,解得,則準(zhǔn)線,雙曲線C的兩條漸近線為,于是得準(zhǔn)線l與兩條漸近線的交點(diǎn)分別為,原點(diǎn)為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C3、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C4、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D5、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C6、A【解析】直線與曲線相切于點(diǎn),可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點(diǎn)將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點(diǎn)睛】本題考查了根據(jù)切點(diǎn)求參數(shù)問(wèn)題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計(jì)算能力,屬于中檔題.7、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測(cè)結(jié)果為陰性”,則命題為“甲核酸檢測(cè)結(jié)果不是陰性”;命題為“乙核酸檢測(cè)結(jié)果為陰性”,則命題為“乙核酸檢測(cè)結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測(cè)結(jié)果不是陰性”可表示為.故選D.8、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因?yàn)閳A與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B9、C【解析】由導(dǎo)數(shù)的運(yùn)算法則、復(fù)合函數(shù)的求導(dǎo)法則計(jì)算后可判斷【詳解】A:;B:;C:;D:故選:C10、D【解析】建立空間直角坐標(biāo)系,進(jìn)而根據(jù)空間向量的坐標(biāo)運(yùn)算判斷A,B,C;對(duì)D,算出平面MON的法向量,進(jìn)而求出向量在該法向量方向上投影的絕對(duì)值,即為所求距離.【詳解】如圖建立空間直角坐標(biāo)系,則.對(duì)A,,則,則A正確;對(duì)B,,則,則B正確;對(duì)C,,則C正確;對(duì)D,設(shè)平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯(cuò)誤.故選:D.11、C【解析】不妨取點(diǎn)在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點(diǎn)的坐標(biāo),再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點(diǎn)在第一象限,則的坐標(biāo)為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長(zhǎng)為故選:12、B【解析】利用微積分基本定理計(jì)算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點(diǎn)為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過(guò)點(diǎn)O且與CD垂直的直線為y軸,以過(guò)點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:14、【解析】求解導(dǎo)函數(shù),然后根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率,并計(jì)算,利用點(diǎn)斜式寫出切線方程.【詳解】,由題意,切線的斜率為,,所以曲線在點(diǎn)處的切線方程為,即.故答案為:15、【解析】先求出中點(diǎn)坐標(biāo),再由距離公式得出過(guò)B點(diǎn)的中線長(zhǎng).【詳解】由中點(diǎn)坐標(biāo)公式可得中點(diǎn),則過(guò)B點(diǎn)的中線長(zhǎng)為.故答案為:16、【解析】根據(jù)正弦型函數(shù)圖像平移法則和正弦函數(shù)性質(zhì)進(jìn)行解題.【詳解】解:由題意得:函數(shù)的圖像向左平移個(gè)單位后得:該函數(shù)與原函數(shù)圖像重合故可知,即故當(dāng)時(shí),最小正實(shí)數(shù).故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)設(shè)出橢圓方程,根據(jù)短軸長(zhǎng)和離心率求出,,從而求出橢圓方程;(2)短軸端點(diǎn)與焦點(diǎn)相連所得的線段長(zhǎng)即為,從而求出,得到橢圓方程.【小問(wèn)1詳解】設(shè)橢圓方程為,則,,則,解得:,則該橢圓的方程為【小問(wèn)2詳解】設(shè)橢圓方程為,由題得:,,則,則該橢圓的方程為18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項(xiàng)和公式,即可得答案.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項(xiàng)公式【小問(wèn)2詳解】由(1)可得,,又,所以數(shù)列是以4為首項(xiàng),4為公比的等比數(shù)列,所以19、(1)0.56(2)0.94(3)0.38【解析】(1)根據(jù)獨(dú)立事件的概率公式計(jì)算;(2)結(jié)合對(duì)立事件的概率公式、獨(dú)立事件的概率公式計(jì)算(3)利用互斥事件與獨(dú)立事件的概率公式計(jì)算【小問(wèn)1詳解】設(shè)甲擊中目標(biāo)為事件,乙擊中目標(biāo)為事件,甲乙兩人同時(shí)擊中目標(biāo)的概率;【小問(wèn)2詳解】甲乙兩人中至少有一個(gè)人擊中目標(biāo)的概率為;【小問(wèn)3詳解】甲乙兩人中恰有一人擊中目標(biāo)的概率為20、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】頻率分布直方圖以面積的形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,所以計(jì)算面積之比即為所求小組的頻率.可用此方法計(jì)算(1),(2),由公式直接計(jì)算可得(1)中樣本容量;根據(jù)(2)問(wèn)中的達(dá)標(biāo)率,可計(jì)算不達(dá)標(biāo)率,從而求出不達(dá)標(biāo)人數(shù),可得(3);單獨(dú)計(jì)算第三組的頻率,由公式計(jì)算頻數(shù),可求出(4).【小問(wèn)1詳解】頻率分布直方圖以面積形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,因此第二小組的頻率為=0.08所以樣本容量==150.【小問(wèn)2詳解】由直方圖可估計(jì)該校高一年級(jí)學(xué)生的達(dá)標(biāo)率為×100%=88%.【小問(wèn)3詳解】由(1)(2)知達(dá)標(biāo)率為88%,樣本量為150,不達(dá)標(biāo)的學(xué)生頻率為1-0.88=0.12所以樣本中不達(dá)標(biāo)的學(xué)生人數(shù)為150×0.12=18(人)【小問(wèn)4詳解】第三小組的頻率為=0.34又因?yàn)闃颖玖繛?50,所以第三組的頻數(shù)為150×0.34=5121、(1)證明見(jiàn)解析(2)(3)存在點(diǎn),使得平面,且【解析】(1)由面面垂直的性質(zhì)可得平面,再由線面垂直的性質(zhì)可證得結(jié)論,(2)可證得兩兩垂直,所以分別以為軸,軸,軸建立空間直角坐標(biāo)系,利用空間向量求解,(3)設(shè),然后利用空間向量求解【小問(wèn)1詳解】證明:因?yàn)闉檎叫?,所以又因?yàn)槠矫嫫矫?,且平面平面,所以平面平面所以;【小?wèn)2詳解】由(1)可知,平面,所以,因?yàn)?,所以兩兩垂直分別以為軸,軸,軸建立空間直角坐標(biāo)系(如圖)因?yàn)?,,所以,所以,設(shè)平面的一個(gè)法向量為,則,即令,則,;所以設(shè)直線與平面所成角為,則直線與平面所成角為的正弦值為;【小問(wèn)3詳解】設(shè),易知設(shè),則,所以,所以,所以設(shè)平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025國(guó)家工商管理局測(cè)繪合同示范文本
- 中國(guó)通風(fēng)金屬管道項(xiàng)目投資可行性研究報(bào)告
- 2025公司裝修合同模板
- 上海戲劇學(xué)院《會(huì)計(jì)規(guī)范》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海外國(guó)語(yǔ)大學(xué)《二次接線》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025《廣西教育》廣告認(rèn)刊合同書
- 上海思博職業(yè)技術(shù)學(xué)院《民事爭(zhēng)議處理實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 工作報(bào)告 英文 范文
- 案例分析報(bào)告范文
- 課題申報(bào)書:共同股東對(duì)供應(yīng)鏈韌性的影響研究-基于橫向、縱向持股視角
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 《路德維?!べM(fèi)爾巴哈和德國(guó)古典哲學(xué)的終結(jié)》導(dǎo)讀
- 新改版蘇教版六年級(jí)下冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(精編版)
- 應(yīng)用經(jīng)方治療頑固性心力衰竭課件
- 斷點(diǎn)管理培訓(xùn)課件-供應(yīng)商版
- 福建省泉州市南安市2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試題(含解析)
- 初一數(shù)學(xué)寒假銜接班(寒假補(bǔ)課講義)
- 疼痛科護(hù)士的職業(yè)規(guī)劃與發(fā)展空間
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期期末科學(xué)試卷
- 醫(yī)院人文培訓(xùn)課件
- 刑事辯護(hù)與刑事辯護(hù)策略
評(píng)論
0/150
提交評(píng)論