2025屆黃山市重點中學高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2025屆黃山市重點中學高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2025屆黃山市重點中學高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2025屆黃山市重點中學高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2025屆黃山市重點中學高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆黃山市重點中學高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過點,且其方向向量,則直線的方程為()A. B.C. D.2.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為03.已知函數(shù)對于任意的滿足,其中是函數(shù)的導函數(shù),則下列各式正確的是()A. B.C. D.4.《九章算術》中,將四個面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.5.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.6.正方體的棱長為2,E,F(xiàn),G分別為,AB,的中點,則直線ED與FG所成角的余弦值為()A. B.C. D.7.已知向量,,且,則的值是()A. B.C. D.8.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.9.的展開式中的系數(shù)為,則()A. B.C. D.10.我國古代數(shù)學名著《算法統(tǒng)宗》是明代數(shù)學家程大位(1533-1606年)所著.該書中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.111.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.12.為了解青少年視力情況,統(tǒng)計得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,,公差,則_________14.某廠將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號為1~64,若已知8號、24號、56號在樣本中,那么樣本中最后一個員工的號碼是__________15.設橢圓,點在橢圓上,求該橢圓在P處的切線方程______.16.寫出一個與橢圓有公共焦點的橢圓方程__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式及;(2)設,求數(shù)列的前n項和.18.(12分)已知數(shù)列是遞增的等比數(shù)列,滿足,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和19.(12分)橢圓的左、右焦點分別為,短軸的一個端點到的距離為,且橢圓過點過且不與兩坐標軸平行的直線交橢圓于兩點,點與點關于軸對稱.(1)求橢圓的方程(2)當直線的斜率為1時,求的面積;(3)若點,求證:三點共線.20.(12分)已知橢圓的左、右焦點分別是,,離心率為,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C方程;(2)設點P在直線上,過點P的兩條直線分別交曲線C于A,B兩點和M,N兩點,且,求直線AB的斜率與直線MN的斜率之和21.(12分)如圖所示,在直四棱柱中,底面ABCD是菱形,點E,F(xiàn)分別在棱,上,且,(1)證明:點在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值22.(10分)在棱長為4的正方體中,點分別在線段上,點在線段延長線上,,,連接交線段于點.(1)求證平面;(2)求異面直線所成角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意和直線的點方向式方程即可得出結果.【詳解】因為直線過點,且方向向量為,由直線的點方向式方程,可得直線的方程為:,整理,得.故選:D2、D【解析】把要證的結論否定之后,即得所求的反設【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設正確的是a,b全為0.故選:D3、C【解析】令,結合題意可得,利用導數(shù)討論函數(shù)的單調性,進而得出,變形即可得出結果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調遞減,在單調遞增,所以,即,則.故選:C4、A【解析】根據(jù)平面,平面求解.【詳解】因為平面,平面,所以,又,,,所以,所以,故選:A5、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質,三角形的重心的向量表示,屬于中檔題.6、B【解析】建立空間直角坐標系,利用空間向量坐標運算即可求解.【詳解】如圖所示建立適當空間直角坐標系,故選:B7、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.8、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷9、B【解析】根據(jù)二項式展開式的通項,先求得x的指數(shù)為1時r的值,再求得a的值.【詳解】由題意得:二項式展開式的通項為:,令,則,故選:B10、A【解析】根據(jù)題意,轉化為等比數(shù)列,利用通項公式和求和公式進行求解.【詳解】設這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數(shù)列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.11、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉化為點到準線的距離,即可求出線段中點的橫坐標,即得到答案.【詳解】由已知可得拋物線的準線方程為,設點的坐標分別為和,由拋物線的定義得,即,線段中點的橫坐標為,故線段的中點到軸的距離是.故選:.12、B【解析】將樣本中的數(shù)據(jù)由小到大進行排列,利用中位數(shù)的定義可得結果.【詳解】將樣本中的數(shù)據(jù)由小到大進行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:1514、40【解析】結合系統(tǒng)抽樣的抽樣方法來確定最后抽取的號碼.【詳解】因為分段間隔為,故最后一個員工的號碼為.故答案為:15、【解析】由題意可知切線的斜率存在,所以設切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:16、(答案不唯一)【解析】根據(jù)橢圓的標準方程,以及分析即可【詳解】由題可知橢圓的形式應為(,且),可取故答案為:(答案不唯一)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設等差數(shù)列的公差為,根據(jù)已知條件可得出關于、的方程組,解出這兩個量的值,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式,利用等差數(shù)列前n項和公式求出;(2)求得,利用裂項相消法即可求得.【小問1詳解】設等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項公式,;【小問2詳解】由(1)可得,所以,所以.18、(1)(2)【解析】(1)由等比數(shù)列的通項公式計算基本量從而得出的通項公式;(2)由(1)可得,再由裂項相消法求和即可.【小問1詳解】設等比數(shù)列的公比為q,所以有,,聯(lián)立兩式解得或又因為數(shù)列是遞增的等比數(shù)列,所以,所以數(shù)列的通項公式為;【小問2詳解】∵,∴,∴19、(1);(2);(3)證明見解析.【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)聯(lián)立直線和橢圓的方程求出弦長和三角形的高即得解;(3)聯(lián)立直線和橢圓的方程,得到韋達定理,再利用平面向量證明.【小問1詳解】解:由題得,所以橢圓方程為,因為橢圓過點所以,所以所以橢圓的方程為.【小問2詳解】解:由題得,所以直線的方程為即,聯(lián)立直線和橢圓方程得,所以,點到直線的距離為.所以的面積為.【小問3詳解】解:設直線的方程為,聯(lián)立直線和橢圓的方程得,設,所以,由題得,,所以,所以,所以,又有公共點,所以三點共線.20、(1)(2)0【解析】(1)由條件得和,再結合可求解;(2)設直線AB的方程為:,與橢圓聯(lián)立,得到,同理得,再根據(jù)題中的條件化簡整理可求解.【小問1詳解】因為橢圓的離心率為,所以,所以①又因為過且垂直于x軸的直線被橢圓C截得的線段長為1,所以②,由①②可知,所以,,所以橢圓C的方程為【小問2詳解】因為點P在直線上,所以設點,由題可知,直線AB的斜率與直線MN的斜率都存在所以直線AB的方程為:,即,直線MN的方程為:,即,設,,,,所以,消去y可得,,整理可得,且所以,,又因為,,所以,同理可得,又因為,所以,又因為,,,都是長度,所以,所以,整理可得,又因為,所以,所以直線AB的斜率與直線MN的斜率之和為021、(1)證明見解析;(2).【解析】(1)設、、、AC與BD的交點為O,由直四棱柱的性質構建空間直角坐標系,確定、的坐標可得,即可證結論.(2)由題設,求出、、的坐標,進而求得面BEF的法向量,利用空間向量夾角的坐標表示求直線與平面BEF所成角的正弦值【小問1詳解】由題意,,設,,,設AC與BD的交點為O,以O為坐標原點,分別以BD,AC所在直線為x,y軸建立如下空

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論