版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省七校聯(lián)合體2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列中,,則這個數(shù)列的公比是()A.2 B.4C.8 D.162.若函數(shù)在上為單調(diào)增函數(shù),則m的取值范圍()A. B.C. D.3.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條4.已知直線過點,當(dāng)直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.5.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)6.已知函數(shù)在處有極小值,則c的值為()A.2 B.4C.6 D.2或67.已知是雙曲線的左焦點,,是雙曲線右支上的動點,則的最小值為()A.9 B.8C.7 D.68.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點反射后經(jīng)過它的焦點.反之,從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的軸.已知拋物線,從點發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點,則光線從A出發(fā)到達B所走過的路程為()A.8 B.10C.12 D.149.已知函數(shù),.若存在三個零點,則實數(shù)的取值范圍是()A. B.C. D.10.如圖,用隨機模擬方法近似估計在邊長為e(e為自然對數(shù)的底數(shù))的正方形中陰影部分的面積,先產(chǎn)生兩組區(qū)間上的隨機數(shù)和,因此得到1000個點對,再統(tǒng)計出落在該陰影部分內(nèi)的點數(shù)為260個,則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.9211.在空間直角坐標系中,點關(guān)于平面的對稱點的坐標是()A. B.C. D.12.已知奇函數(shù),則的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在點處的切線為直線l,則l與坐標軸圍成的三角形面積為___________.14.?dāng)?shù)列中,,,設(shè)(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和;(3)若,為數(shù)列的前項和,求不超過的最大的整數(shù)15.已知曲線表示焦點在軸上的雙曲線,則符合條件的的一個整數(shù)值為______.16.某幾何體的三視圖如圖所示,則該幾何體的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)的取值范圍.(2)解關(guān)于的不等式(其中).18.(12分)為了調(diào)查某蘋果園中蘋果的生長情況,在蘋果園中隨機采摘了個蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機采摘個蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個蘋果中隨機挑出個,這個蘋果的重量情況如下.重量范圍(單位:)個數(shù)為進一步了解蘋果的甜度,從這個蘋果中隨機選出個,記隨機選出的個蘋果中重量在內(nèi)的個數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.19.(12分)公差不為零的等差數(shù)列中,已知其前n項和為,若,且成等比數(shù)列(1)求數(shù)列的通項;(2)當(dāng)時,求數(shù)列的前n和20.(12分)已知函數(shù),.(1)令,求函數(shù)的零點;(2)令,求函數(shù)的最小值.21.(12分)已知橢圓:()的左、右焦點分別為,焦距為,過點作直線交橢圓于兩點,的周長為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構(gòu)成的三角形面積的最大值.22.(10分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,(1)求,;(2)已知,,試比較,的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】直接利用公式計算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,,所以,解得.故選:A2、B【解析】用函數(shù)單調(diào)性確定參數(shù),使用參數(shù)分離法即可.【詳解】,在上是增函數(shù),即恒成立,;設(shè),;∴時,是增函數(shù);時,是減函數(shù);故時,,∴;故選:B.3、D【解析】求得圓心坐標分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.4、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A5、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.6、A【解析】根據(jù)求出c,進而得到函數(shù)的單調(diào)性,然后根據(jù)極小值的定義判斷答案.【詳解】由題意,,則,所以或.若c=2,則,時,,單調(diào)遞增,時,,單調(diào)遞減,時,,單調(diào)遞增.函數(shù)在處有極小值,滿足題意;若c=6,則,函數(shù)R上單調(diào)遞增,不合題意.綜上:c=2.故選:A.7、A【解析】由雙曲線方程求出,再根據(jù)點在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點為,右焦點,則由雙曲線的定義得,因為點在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點共線時取等號,所以的最小值為9,故選:A8、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點為,設(shè)光線第一次交拋物線于點,第二次交拋物線于點,過焦點F,準線方程為:,作垂直于準線于點,作垂直于準線于點,則,,,,故選:C9、B【解析】根據(jù)題意,當(dāng)時,有一個零點,進而將問題轉(zhuǎn)化為當(dāng)時,有兩個實數(shù)根,再研究函數(shù)即可得答案.【詳解】解:因為存在三個零點,所以方程有三個實數(shù)根,因為當(dāng)時,由得,解得,有且只有一個實數(shù)根,所以當(dāng)時,有兩個實數(shù)根,即有兩個實數(shù)根,所以令,則,所以當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,因為,,,所以的圖象如圖所示,所以有兩個實數(shù)根,則故選:B10、D【解析】根據(jù)幾何概型的概率公式即可直接求出答案.【詳解】易知,根據(jù)幾何概型的概率公式,得,所以.故選:D.11、C【解析】根據(jù)空間里面點關(guān)于面對稱的性質(zhì)即可求解.【詳解】在空間直角坐標系中,點關(guān)于平面的對稱點的坐標是.故選:C.12、A【解析】先由求出的值,進而可得的解析式,對求導(dǎo),利用基本不等式可判斷恒成立,可判斷的單調(diào)性,根據(jù)單調(diào)性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數(shù),所以,可得:,所以,經(jīng)檢驗是奇函數(shù),符合題意,所以,因為,所以,當(dāng)且僅當(dāng)即時等號成立,所以在上單調(diào)遞增,由可得,即,解得:或,所以的解集為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出切線方程,分別得到直線與x、y軸交點,即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標軸圍成的三角形面積為.故答案為:.14、(1)證明見解析;(2);(3)2021【解析】(1)將兩邊都加,證明是常數(shù)即可;(2)求出的通項,利用錯位相減法求解即可;(3)先求出,再求出的表達式,利用裂項相消法即可得解.【詳解】(1)將兩邊都加,得,而,即有,又,則,,所以數(shù)列是首項為,公比為的等比數(shù)列;(2)由(1)知,,則,,,因此,,所以;(3)由(2)知,于是得,則,因此,,所以不超過的最大的整數(shù)是202115、.(答案不唯一)【解析】給出一個符合條件的值即可.【詳解】當(dāng)時,曲線表示焦點在軸上的雙曲線,故答案為:.(答案不唯一)16、【解析】根據(jù)三視圖還原幾何體,由此計算出幾何體的體積.【詳解】根據(jù)三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析.【解析】(1)結(jié)合分離常數(shù)法、基本不等式求得的取值范圍.(2)將原不等式轉(zhuǎn)化為,對進行分類討論,由此求得不等式的解集.【詳解】(1)不等式即為:,當(dāng)時,可變形為:,即.又,當(dāng)且僅當(dāng),即時,等號成立,,即.實數(shù)的取值范圍是:.(2)不等式,即,等價于,即,①當(dāng)時,不等式整理為,解得:;當(dāng)時,方程的兩根為:,.②當(dāng)時,可得,解不等式得:或;③當(dāng)時,因為,解不等式得:;④當(dāng)時,因為,不等式的解集為;⑤當(dāng)時,因為,解不等式得:;綜上所述,不等式的解集為:①當(dāng)時,不等式解集為;②當(dāng)時,不等式解集為;③當(dāng)時,不等式解集為;④當(dāng)時,不等式解集為;⑤當(dāng)時,不等式解集為.18、(1);(2)分布列答案見解析,數(shù)學(xué)期望為.【解析】(1)利用正態(tài)密度曲線的對稱性結(jié)合已知條件可求得的值;(2)分析可知,隨機變量的所有可能取值為、、,計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,進一步可求得的值.【小問1詳解】解:已知蘋果的重量(單位:)近似服從正態(tài)分布,由正態(tài)分布的對稱性可知,,所以從蘋果園中隨機采摘個蘋果,該蘋果的重量在內(nèi)的概率為.【小問2詳解】解:由題意可知,隨機變量的所有可能取值為、、,,;,所以,隨機變量的分布列為:所以19、(1)(2)【解析】(1)根據(jù)等差數(shù)列的性質(zhì),結(jié)合題意,可求得值,根據(jù)成等比數(shù)列,即可求得d值,代入等差數(shù)列通項公式,即可得答案;(2)由(1)可求得,即可得表達式,根據(jù)裂項相消求和法,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為,由等差數(shù)列性質(zhì)可得,解得,又成等比數(shù)列,所以,整理得,因為,所以,所以【小問2詳解】由(1)可得,則,所以,所以20、(1)答案見解析(2)答案見解析【解析】(1)函數(shù)零點的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解,再對a分類討論,即得函數(shù)的零點;(2)令,可得,得,再對二次函數(shù)的對稱軸分三種情況討論得解.【詳解】(1)由,可知函數(shù)零點的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解;當(dāng)時,方程可化為,得,由函數(shù)單調(diào)遞增,且值域為,有下列幾種情況如下:①當(dāng)時,方程沒有根,可得函數(shù)只有一個零點;②當(dāng)時,方程的根為,可得函數(shù)只有一個零點;③當(dāng)且時,方程的根為,由,可得函數(shù)有兩個零點和;由上知,當(dāng)或時,函數(shù)的零點為;當(dāng)且時,數(shù)的零點為和.(2)令,可得,由,,可得,二次函數(shù)的對稱軸為,①當(dāng)時,即,此時函數(shù)的最小值為;②當(dāng)時,即,此時函數(shù)的最小值為;③當(dāng),即,此時函數(shù)最小值為.【點睛】本題主要考查函數(shù)的零點問題,考查指數(shù)對數(shù)函數(shù)的圖象,考查函數(shù)的最值問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.21、(1)(2)【解析】(1)根據(jù)題意可得,,再由,即可求解.(2)設(shè)直線的方程為,將直線與橢圓方程聯(lián)立求得關(guān)于的方程,利用弦長公式求出,再利用點到直線的距離求出點到直線的距離,利用三角形的面積公式配方即可求解.【詳解】解(1)由題意得:,,∴,∴∴橢圓的方程為(2)∵直線的斜率為,∴可設(shè)直線的方程為與橢圓的方程聯(lián)立可得:①設(shè)兩點的坐標為,由韋達定理得:,∴點到直線的距離,∴由①知:,,令,則,∴令,則在上的最大值為∴的最大值為綜上所述:三角形面積的最大值2.【點睛】本題考查了根據(jù)求橢圓的標準方程,考查了直線與橢圓額位置關(guān)系中三角形面積問題,考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專項定制旅游接待協(xié)議樣式(2024年版)版B版
- 專業(yè)游泳館運營勞務(wù)輸出協(xié)議2024
- 2025年度廠房抵押貸款風(fēng)險控制合同范本4篇
- 專業(yè)地面打蠟工程協(xié)議范本一
- 2025年度智能辦公空間租賃合作協(xié)議范本4篇
- 二零二五年度影視基地場地租賃及影視制作合同范本3篇
- 專業(yè)汽油運輸業(yè)務(wù)協(xié)議(2024年版)版B版
- 個人土地使用與承包2024版協(xié)議樣本版
- 2025年度高端商業(yè)區(qū)場地租賃及安全管理服務(wù)合同3篇
- 專業(yè)軟件外部開發(fā)合同樣本2024
- 2025年河北供水有限責(zé)任公司招聘筆試參考題庫含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 說課稿-2024-2025學(xué)年高中英語人教版(2019)必修第一冊
- 農(nóng)發(fā)行案防知識培訓(xùn)課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- NB/T 11536-2024煤礦帶壓開采底板井下注漿加固改造技術(shù)規(guī)范
- 2024年九年級上德育工作總結(jié)
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生兒預(yù)防接種護理質(zhì)量考核標準
- 除氧器出水溶解氧不合格的原因有哪些
- 沖擊式機組水輪機安裝概述與流程
- 畢業(yè)論文-水利水電工程質(zhì)量管理
評論
0/150
提交評論