廣東省揭陽市第三中學(xué)高中數(shù)學(xué)選修2-214生活中的優(yōu)化問題舉例(第3課時(shí))教案_第1頁
廣東省揭陽市第三中學(xué)高中數(shù)學(xué)選修2-214生活中的優(yōu)化問題舉例(第3課時(shí))教案_第2頁
廣東省揭陽市第三中學(xué)高中數(shù)學(xué)選修2-214生活中的優(yōu)化問題舉例(第3課時(shí))教案_第3頁
廣東省揭陽市第三中學(xué)高中數(shù)學(xué)選修2-214生活中的優(yōu)化問題舉例(第3課時(shí))教案_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

揭陽第三中學(xué)教案表課題1.4生活中的優(yōu)化問題舉例(第3課時(shí))課型新授課教學(xué)目標(biāo)使利潤最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用;2.提高將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題.教學(xué)難點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題.教具準(zhǔn)備多媒體課時(shí)安排1教學(xué)過程與教學(xué)內(nèi)容教學(xué)方法、教學(xué)手段與學(xué)法、學(xué)情教學(xué)過程:一.典例分析例1.在經(jīng)濟(jì)學(xué)中,生產(chǎn)x單位產(chǎn)品的成本稱為成本函數(shù)同,記為C(x),出售x單位產(chǎn)品的收益稱為收益函數(shù),記為R(x),R(x)-C(x)稱為利潤函數(shù),記為P(x)。(1)、如果C(x)=,那么生產(chǎn)多少單位產(chǎn)品時(shí),邊際最低?(邊際成本:生產(chǎn)規(guī)模增加一個(gè)單位時(shí)成本的增加量)(2)、如果C(x)=50x+10000,產(chǎn)品的單價(jià)P=100-0.01x,那么怎樣定價(jià),可使利潤最大?變式:已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為.求產(chǎn)量q為何值時(shí),利潤L最大?分析:利潤L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格.由此可得出利潤L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤.解:收入,利潤令,即,求得唯一的極值點(diǎn)答:產(chǎn)量為84時(shí),利潤L最大例2.一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長b.解:由梯形面積公式,得S=(AD+BC)h,其中AD=2DE+BC,DE=h,BC=b∴AD=h+b,∴S= ①∵CD=,AB=CD.∴l(xiāng)=×2+b ②由①得b=h,代入②,∴l(xiāng)=l′==0,∴h=,當(dāng)h<時(shí),l′<0,h>時(shí),l′>0.∴h=時(shí),l取最小值,此時(shí)b=例3.已知矩形的兩個(gè)頂點(diǎn)位于x軸上,另兩個(gè)頂點(diǎn)位于拋物線y=4-x2在x軸上方的曲線上,求這種矩形中面積最大者的邊長.【解】設(shè)位于拋物線上的矩形的一個(gè)頂點(diǎn)為(x,y),且x>0,y>0,則另一個(gè)在拋物線上的頂點(diǎn)為(-x,y),在x軸上的兩個(gè)頂點(diǎn)為(-x,0)、(x,0),其中0<x<2.設(shè)矩形的面積為S,則S=2x(4-x2),0<x<2.由S′(x)=8-6x2=0,得x=,易知x=是S在(0,2)上的極值點(diǎn),即是最大值點(diǎn),所以這種矩形中面積最大者的邊長為和.【點(diǎn)評(píng)】應(yīng)用題求解,要正確寫出目標(biāo)函數(shù)并明確題意所給的變量制約條件.應(yīng)用題的分析中如確定有最小值,且極小值唯一,即可確定極小值就是最小值.二.課堂練習(xí)1.用總長為14.8m的鋼條制作一個(gè)長方體容器的框架,如果所制作的容器的底面的一邊比另一邊長0.5m,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.(高為1.2m,最大容積)2.課本練習(xí)三.回顧總結(jié)解決優(yōu)化問題的方法:通過搜集大量的統(tǒng)計(jì)數(shù)據(jù),建立與其相應(yīng)的數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論