山東青島膠州市2025屆高一數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
山東青島膠州市2025屆高一數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
山東青島膠州市2025屆高一數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
山東青島膠州市2025屆高一數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
山東青島膠州市2025屆高一數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東青島膠州市2025屆高一數(shù)學第一學期期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知弧長為cm的弧所對的圓心角為,則這條弧所在的扇形面積為()cm2A. B.C. D.2.已知直線與直線平行,則的值為A.1 B.-1C.0 D.-1或13.已知函數(shù)在[2,8]上單調(diào)遞減,則k的取值范圍是()A. B.C. D.4.函數(shù)在區(qū)間上的最小值是A. B.0C. D.25.下列說法正確的是()A.向量與共線,與共線,則與也共線B.任意兩個相等的非零向量的始點與終點是一個平行四邊形的四個頂點C.向量與不共線,則與都是非零向量D.有相同起點的兩個非零向量不平行6.如圖,已知,,共線,且向量,則()A. B.C. D.7.設則的值為A. B.C.2 D.8.已知在上的減函數(shù),則實數(shù)的取值范圍是()A. B.C. D.9.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一.他在割圓術中提出的“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,可以得到的近似值為()A. B.C. D.10.已知,點在軸上,,則點的坐標是A. B.C.或 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則函數(shù)的最大值是__________12.給出下列說法:①和直線都相交的兩條直線在同一個平面內(nèi);②三條兩兩相交的直線一定在同一個平面內(nèi);③有三個不同公共點的兩個平面重合;④兩兩相交且不過同一點的四條直線共面其中正確說法的序號是______13.在直角中,三條邊恰好為三個連續(xù)的自然數(shù),以三個頂點為圓心的扇形的半徑為1,若在中隨機地選取個點,其中有個點正好在扇形里面,則用隨機模擬的方法得到的圓周率的近似值為__________.(答案用,表示)14.在下列四個函數(shù)中:①,②,③,④.同時具備以下兩個性質(zhì):(1)對于定義域上任意x,恒有;(2)對于定義域上的任意、,當時,恒有的函數(shù)是______(只填序號)15.若xlog23=1,則9x+3﹣x=_____16.__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設集合,,.(1)求,;(2)若,求;(3)若,求的取值范圍.18.集合A={x|},B={x|};(1)用區(qū)間表示集合A;(2)若a>0,b為(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范圍.19.已知的三個頂點為,,.(1)求邊所在直線的方程;(2)若邊上的中線所在直線的方程為,且,求的值.20.已知函數(shù)且.(1)求函數(shù)的定義域;(2)判斷的奇偶性并予以證明;(3)若0<a<1,解關于x的不等式.21.已知函數(shù)(且).(1)當時,,求的取值范圍;(2)若在上最小值大于1,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)弧長計算出半徑,再利用面積公式得到答案.【詳解】弧長為cm的弧所對的圓心角為,則故選【點睛】本題考查了扇形面積,求出半徑是解題的關鍵.2、A【解析】由于直線l1:ax+y-1=0與直線l2:x+ay+=0平行所以,即-1或1,經(jīng)檢驗成立.故選A.3、C【解析】利用二次函數(shù)的單調(diào)性可得答案.【詳解】因為函數(shù)的對稱軸為所以要使函數(shù)在[2,8]上單調(diào)遞減,則有,即故選:C4、A【解析】函數(shù),可得的對稱軸為,利用單調(diào)性可得結(jié)果【詳解】函數(shù),其對稱軸為,在區(qū)間內(nèi)部,因為拋物線的圖象開口向上,所以當時,在區(qū)間上取得最小值,其最小值為,故選A【點睛】本題考查二次函數(shù)的最值,注意分析的對稱軸,屬于基礎題.若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關鍵在于正確化成完全平方式,并且一定要先確定其定義域.5、C【解析】根據(jù)共線向量(即平行向量)定義即可求解.【詳解】解:對于A:可能是零向量,故選項A錯誤;對于B:兩個向量可能在同一條直線上,故選項B錯誤;對于C:因為與任何向量都是共線向量,所以選項C正確;對于D:平行向量可能在同一條直線上,故選項D錯誤故選:C.6、D【解析】由已知得,再利用向量的線性可得選項.【詳解】因為,,,三點共線,所以,所以.故選:D.7、D【解析】由題意可先求f(2),然后代入f(f(2))=f(﹣1)可得結(jié)果.【詳解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故選D【點睛】本題主要考查了分段函數(shù)的函數(shù)值的求解,解題的關鍵是需要判斷不同的x所對應的函數(shù)解析式,屬于基礎試題8、B【解析】令,,()若,則函數(shù),減函數(shù),由題設知為增函數(shù),需,故此時無解()若,則函數(shù)是增函數(shù),則為減函數(shù),需且,可解得綜上可得實數(shù)的取值范圍是故選點睛:已知函數(shù)的單調(diào)性確定參數(shù)的值或范圍要注意以下兩點:(1)若函數(shù)在區(qū)間上單調(diào),則該函數(shù)在此區(qū)間的任意子區(qū)間上也是單調(diào)的;(2)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值;(3)復合函數(shù)的單調(diào)性,不僅要注意內(nèi)外函數(shù)單調(diào)性對應關系,而且要注意內(nèi)外函數(shù)對應自變量取值范圍.9、B【解析】將一個圓的內(nèi)接正邊形等分成個等腰三角形;根據(jù)題意,可知個等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【詳解】將一個圓的內(nèi)接正邊形等分成個等腰三角形,設圓的半徑為,則,即,所以.故選:B.10、C【解析】依題意設,根據(jù),解得,所以選.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由函數(shù)變形為,再由基本不等式求得,從而有,即可得到答案.【詳解】∵函數(shù)∴由基本不等式得,當且僅當,即時取等號.∴函數(shù)的最大值是故答案為.【點睛】本題主要考查線性規(guī)劃的應用以及基本不等式的應用,.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).12、④【解析】利用正方體可判斷①②的正誤,利用公理3及其推論可判斷③④的正誤.【詳解】如圖,在正方體中,,,但是異面,故①錯誤.又交于點,但不共面,故②錯誤.如果兩個平面有3個不同公共點,且它們共線,則這兩個平面可以相交,故③錯誤.如圖,因為,故共面于,因為,故,故即,而,故,故即即共面,故④正確.故答案為:④13、【解析】由題意得的三邊分別為則由可得,所以,三角數(shù)三邊分別為,因為,所以三個半徑為的扇形面積之和為,由幾何體概型概率計算公式可知,故答案為.【方法點睛】本題題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.14、③④【解析】滿足條件(1)則函數(shù)為奇函數(shù),滿足條件(2)則函數(shù)為其定義域上的減函數(shù).分別判斷四個函數(shù)的單調(diào)性和奇偶性即可.【詳解】滿足條件(1)則函數(shù)為奇函數(shù),滿足條件(2)則函數(shù)為其定義域上的減函數(shù).①,f(x)奇函數(shù),在定義域不單調(diào);②,f(x)是偶函數(shù),在定義域R內(nèi)不單調(diào);③,f(x)是奇函數(shù),且在定義域R上單調(diào)遞減;④,滿足為奇函數(shù),且根據(jù)指數(shù)函數(shù)性質(zhì)可知其在定義域R上為減函數(shù).綜上,滿足條件(1)(2)的函數(shù)有③④.故答案為:③④.15、【解析】由已知條件可得x=log32,即3x=2,再結(jié)合分數(shù)指數(shù)冪的運算即可得解.【詳解】解:∵,∴x=log32,則3x=2,∴9x=4,,∴,故答案為:【點睛】本題考查了指數(shù)與對數(shù)形式的互化,重點考查了分數(shù)指數(shù)冪的運算,屬基礎題.16、2【解析】考點:對數(shù)與指數(shù)的運算性質(zhì)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)(3)【解析】(1)先可求出,再利用交集,并集運算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式組求出的范圍即可.【詳解】(1)由已知得,所以,;(2)由(1)得,當時,,所以.;(3)因為,所以,解得.【點睛】本題考查集合的交并補的運算,考查集合的包含關系的含義,是基礎題.18、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,將b代入并因式分解,即可得解;(3)由題意知A?B,對a分類討論即求得范圍【詳解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,當且僅當t=5時取等號,故即為:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A?B,而可得:a=0時,化為:2x﹣b<0,解得但不滿足A?B,舍去a>0時,解得:或但不滿足A?B,舍去a<0時,解得或∵A?B∴,解得∴a、b的取值范圍是a∈,b∈(-4,0).【點評】本題考查了集合運算性質(zhì)、不等式的解法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.19、(Ⅰ);(Ⅱ)或【解析】Ⅰ由斜率公式可得,結(jié)合點斜式方程整理計算可得BC邊所在直線方程為.Ⅱ由題意可得,則△ABC的BC邊上的高,據(jù)此由點到直線距離公式和直線方程得到關于m,n的方程組,求解方程組可得,或,.【詳解】Ⅰ,,.,可得直線BC方程為,化簡,得BC邊所在直線方程為.Ⅱ由題意,得,,解之得,由點到直線的距離公式,得,化簡得或,或.解得,或,.【點睛】本題主要考查直線方程的求解,點到直線距離公式的應用,方程的數(shù)學思想等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1)(2)奇函數(shù).(3)【解析】(1)根據(jù)對數(shù)的真數(shù)應大于0,列出不等式組可得函數(shù)的定義域;(2)函數(shù)為奇函數(shù),利用可得結(jié)論;(3)不等式等價于,利用對數(shù)函數(shù)的單調(diào)性得,解不等式即可.試題解析:(1)由題得,所以函數(shù)的定義域為;(2)函數(shù)為奇函數(shù).證明:由(1)知函數(shù)的定義域關于原點對稱,且,所以函數(shù)為奇函數(shù);(3)由可得,即,又0<a<1,所以,故,即,解得,所以原不等式的解集為.點睛:本題主要考查了對數(shù)函數(shù)的定義域,函數(shù)奇偶性的證明,以及指數(shù)函數(shù)、對數(shù)函數(shù)的不等式解法,注重對基礎的考查;要使對數(shù)函數(shù)有意義,需滿足真數(shù)部分大于0,函數(shù)奇偶性的證明即判斷和的關系,而對于指、對數(shù)類型的不等式主要是依

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論