湖南省臨澧一中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
湖南省臨澧一中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
湖南省臨澧一中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
湖南省臨澧一中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
湖南省臨澧一中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省臨澧一中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知?jiǎng)狱c(diǎn)的坐標(biāo)滿足方程,則的軌跡方程是()A. B.C. D.2.直線的一個(gè)法向量為()A. B.C. D.3.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為()A. B.C. D.4.知點(diǎn)分別為圓上的動(dòng).點(diǎn),為軸上一點(diǎn),則的最小值()A. B.C. D.5.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.6.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.167.圓關(guān)于直線l:對(duì)稱的圓的方程為()A. B.C. D.8.已知、,直線,,且,則的最小值為()A. B.C. D.9.過兩點(diǎn)和的直線的斜率為()A. B.C. D.10.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.11.在四棱錐中,底面為平行四邊形,為邊的中點(diǎn),為邊上的一列點(diǎn),連接,交于,且,其中數(shù)列的首項(xiàng),則()A. B.為等比數(shù)列C. D.12.觀察,,,由歸納推理可得:若定義在上的函數(shù)滿足,記為的導(dǎo)函數(shù),則=A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為,漸近線分別為,過點(diǎn)且與垂直的直線分別交于兩點(diǎn),且,則雙曲線的離心率為________14.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點(diǎn),M是它們的一個(gè)公共點(diǎn),且,則的最大值為______15.總體由編號(hào)為01,02,…,30的30個(gè)個(gè)體組成.選取方法是從下面隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號(hào)為____________.66065747173407275017362523611665118918331119921970058102057864532345647616.已知是雙曲線的左、右焦點(diǎn),點(diǎn)M是雙曲線E上的任意一點(diǎn)(不是頂點(diǎn)),過作角平分線的垂線,垂足為N,O是坐標(biāo)原點(diǎn).若,則雙曲線E的漸近線方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說明理由18.(12分)為了了解高二段1000名學(xué)生一周課外活動(dòng)情況,隨機(jī)抽取了若干學(xué)生的一周課外活動(dòng)時(shí)間,時(shí)間全部介于10分鐘與110分鐘之間,將課外活動(dòng)時(shí)間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個(gè)組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8(1)求第一組數(shù)據(jù)的頻率并計(jì)算調(diào)查中隨機(jī)抽取了多少名學(xué)生的一周課外活動(dòng)時(shí)間;(2)求這組數(shù)據(jù)的平均數(shù)19.(12分)橢圓的左右焦點(diǎn)分別為,,焦距為,為原點(diǎn).橢圓上任意一點(diǎn)到,距離之和為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的斜率為2的直線交橢圓于、兩點(diǎn),求的面積.20.(12分)已知函數(shù),為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明,,;(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,橢圓上的動(dòng)點(diǎn)到焦點(diǎn)的最大距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過作一條不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),弦的中垂線交軸于,當(dāng)變化時(shí),是否為定值?若是,定值為多少?22.(10分)設(shè)函數(shù)(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若,為整數(shù),且當(dāng)時(shí),恒成立,求的最大值.(其中為的導(dǎo)函數(shù).)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】此方程表示點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之差為8,而這正好符合雙曲線的定義,點(diǎn)的軌跡是雙曲線的右支,,的軌跡方程是,故選C.2、B【解析】直線化為,求出直線的方向向量,因?yàn)榉ㄏ蛄颗c方向向量垂直,逐項(xiàng)驗(yàn)證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因?yàn)榉ㄏ蛄颗c方向向量垂直,設(shè)法向量為,所以,由于,A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤;故選:B.3、C【解析】求解不等式,利用幾何概型的概率計(jì)算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計(jì)算公式可得:在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為.故選:.4、B【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為1,∴若與關(guān)于x軸對(duì)稱,則,即,當(dāng)三點(diǎn)不共線時(shí),當(dāng)三點(diǎn)共線時(shí),所以同理(當(dāng)且僅當(dāng)時(shí)取得等號(hào))所以當(dāng)三點(diǎn)共線時(shí),當(dāng)三點(diǎn)不共線時(shí),所以∴的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,∴.故選:B.5、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時(shí),g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題6、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時(shí)取等.故選:B.7、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對(duì)稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,則,解得,即圓關(guān)于直線對(duì)稱的圓的圓心為,半徑,所以對(duì)稱圓的方程為;故選:A8、D【解析】先由,可得,變形得,所以,化簡后利用基本不等式求解即可【詳解】因?yàn)?、,直線,,且,所以,即,所以,所以,所以,當(dāng)且僅當(dāng),即時(shí),取等號(hào),所以的最小值為,故選:D9、D【解析】應(yīng)用兩點(diǎn)式求直線斜率即可.【詳解】由已知坐標(biāo),直線的斜率為.故選:D10、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.11、A【解析】由得,為邊的中點(diǎn)得,設(shè),所以,根據(jù)向量相等可判斷A選項(xiàng);由得是公比為的等比數(shù)列,可判斷B選項(xiàng);代入可判斷C選項(xiàng);當(dāng)時(shí)可判斷D選項(xiàng).【詳解】由得,因?yàn)闉檫叺闹悬c(diǎn),所以,所以設(shè),所以,所以,當(dāng)時(shí),A選項(xiàng)正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項(xiàng)錯(cuò)誤;所以,由得,故C選項(xiàng)錯(cuò)誤;當(dāng)時(shí),,所以,此時(shí)為的中點(diǎn),與重合,即,,故D錯(cuò)誤.故選:A.12、D【解析】由歸納推理可知偶函數(shù)的導(dǎo)數(shù)是奇函數(shù),因?yàn)槭桥己瘮?shù),則是奇函數(shù),所以,應(yīng)選答案D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】判斷出三角形的形狀,求得點(diǎn)坐標(biāo),由此列方程求得,進(jìn)而求得雙曲線的離心率.【詳解】依題意設(shè)雙曲線方程為,雙曲線的漸近線方程為,右焦點(diǎn),不妨設(shè).由于,所以是線段的中點(diǎn),由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:14、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關(guān)系,然后利用三角換元求最值即可.【詳解】解析:設(shè)橢圓的長半軸為a,雙曲線的實(shí)半軸為,半焦距為c,設(shè),,,因?yàn)?,所以由余弦定理可得,①在橢圓中,,①化簡為,即,②在雙曲線中,,①化簡為,即,③聯(lián)立②③得,,即,記,,,則,當(dāng)且僅當(dāng),即,時(shí)取等號(hào)故答案為:.15、23【解析】根據(jù)隨機(jī)表,由編號(hào)規(guī)則及讀表位置列舉出前5個(gè)符合要求的編號(hào),即可得答案.【詳解】由題設(shè),依次得到的數(shù)字為57,47,17,34,07,27,50,17,36,25,23,……根據(jù)編號(hào)規(guī)則符合要求的依次為17,07,27,25,23,……所以第5個(gè)個(gè)體編號(hào)為23.故答案為:23.16、【解析】延長交于點(diǎn),利用角平分線結(jié)合中位線和雙曲線定義求得的關(guān)系,然后利用,及漸近線方程即可求得結(jié)果.【詳解】延長交于點(diǎn),∵是的平分線,,,又是中點(diǎn),所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)是定值,理由見解析.【解析】(1)由題意有,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形有,即可寫出橢圓方程;(2)直線與橢圓交于兩點(diǎn),聯(lián)立方程結(jié)合韋達(dá)定理即有,已知應(yīng)用點(diǎn)線距離公式、三角形面積公式即可說明的面積是否為定值;【詳解】(1)橢圓離心率為,即,∵點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,∴,綜上有:,,故橢圓方程為,(2)由直線與橢圓交于兩點(diǎn),聯(lián)立方程:,整理得,設(shè),則,,,,原點(diǎn)到的距離,為定值;【點(diǎn)睛】本題考查了由離心率求橢圓方程,根據(jù)直線與橢圓的相交關(guān)系證明交點(diǎn)與原點(diǎn)構(gòu)成的三角形面積是否為定值的問題.18、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數(shù),總數(shù)之間的關(guān)系可求解學(xué)生人數(shù);(2)平均數(shù):頻率分布直方圖中每個(gè)小長方形的中點(diǎn)乘以對(duì)應(yīng)的長方形面積之和;【小問1詳解】設(shè)圖中從左到右前3個(gè)組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數(shù)據(jù)的頻率為,設(shè)調(diào)查中隨機(jī)抽取了n名學(xué)生的課外活動(dòng)時(shí)間,則,得,所以調(diào)查中隨機(jī)抽取了50名學(xué)生的課外活動(dòng)時(shí)間小問2詳解】由題意,這組數(shù)據(jù)的平均數(shù)(分鐘)19、(1)(2)【解析】(1)根據(jù)題意和橢圓的定義可知a,c,再根據(jù),即可求出b,由此即可求出橢圓的方程;(2)求出直線方程,將其與橢圓方程聯(lián)立,根據(jù)弦長公式求出的長度,再根據(jù)點(diǎn)到直線的距離公式求出點(diǎn)O到直線AB的距離,再根據(jù)面積公式即可求出結(jié)果.【小問1詳解】由題意可得,,∴,,,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】直線l的方程為,代入橢圓方程得,設(shè),,則,,,∴,又∵點(diǎn)O到直線AB的距離,∴,即△OAB的面積為.20、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個(gè)極值點(diǎn),則在上有根.再分,與,利用函數(shù)的零點(diǎn)存在定理討論導(dǎo)函數(shù)的零點(diǎn)即可.【詳解】(1)證明:當(dāng)時(shí),,則,當(dāng)時(shí),,則,又因?yàn)?所以當(dāng)時(shí),,僅時(shí),,所以在上是單調(diào)遞減,所以,即.(2),因?yàn)?所以,①當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,沒有極值點(diǎn).②當(dāng)時(shí),在區(qū)間上單調(diào)遞增,因?yàn)?當(dāng)時(shí),,所以在上單調(diào)遞減,沒有極值點(diǎn).當(dāng)時(shí),,所以存在,使當(dāng)時(shí),時(shí),所以在處取得極小值,為極小值點(diǎn).綜上可知,若函數(shù)在上存在極值點(diǎn),則實(shí)數(shù).【點(diǎn)睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)極值點(diǎn)的問題,需要結(jié)合零點(diǎn)存在定理求解.屬于難題.21、(1)(2)是,【解析】(1)由拋物線方程求出其焦點(diǎn)坐標(biāo),結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計(jì)算,由此完成證明.【小問1詳解】拋物線的交點(diǎn)坐標(biāo)為(1,0),,又,又,∴,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點(diǎn)坐標(biāo)為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點(diǎn)睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值22、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域?yàn)?,,分和兩種情況解不等式和即可得單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可得對(duì)于恒成立,分離可得,令,只需,利用導(dǎo)數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域?yàn)椋?dāng)時(shí),對(duì)于恒成立,此時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí),由可得;由可得;此時(shí)在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論