江蘇省鹽城市大岡初中2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
江蘇省鹽城市大岡初中2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
江蘇省鹽城市大岡初中2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
江蘇省鹽城市大岡初中2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
江蘇省鹽城市大岡初中2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省鹽城市大岡初中2025屆高二上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.化學(xué)中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學(xué)中,可將晶體結(jié)構(gòu)截分為一個個包含等同內(nèi)容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.2.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.43.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點分別為、,左頂點為,左焦點為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.4.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定5.已知隨機變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.326.已知函數(shù),在上隨機取一個實數(shù),則使得成立的概率為()A. B.C. D.7.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.8.是數(shù)列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項9.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.10.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.11.已知函數(shù)的圖象是下列四個圖象之一,且其導(dǎo)函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.12.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰直角中,,為半圓弧上異于,的動點,當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號).14.函數(shù)單調(diào)增區(qū)間為______.15.甲、乙兩隊進(jìn)行籃球決賽,采取七場四勝制(當(dāng)一隊贏得四場勝利時,該隊獲勝,決賽結(jié)束).根據(jù)前期比賽成績,甲隊的主客場安排依次為“主主客客主客主”.設(shè)甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨立,則甲隊以4∶1獲勝的概率是____________16.已知曲線,則曲線在點處的切線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x3+ax2+2,x=2是f(x)的一個極值點.(1)求實數(shù)a的值;(2)求f(x)在區(qū)間(-1,4]上的最大值和最小值.18.(12分)阿基米德(公元前287年---公元前212年,古希臘)不僅是著名的哲學(xué)家、物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.在平面直角坐標(biāo)系中,橢圓的面積等于,且橢圓的焦距為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)點是軸上的定點,直線與橢圓交于不同的兩點,已知A關(guān)于軸的對稱點為,點關(guān)于原點的對稱點為,已知三點共線,試探究直線是否過定點.若過定點,求出定點坐標(biāo);若不過定點,請說明理由.19.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.20.(12分)已知橢圓經(jīng)過點,橢圓E的一個焦點為(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于A,B兩點.求的最大值21.(12分)(1)某校運動會上甲、乙、丙、丁四名同學(xué)在100m、400m、800m三個項目中選擇,每人報一項,共有多少種報名方法?(2)若甲、乙、丙、丁四名同學(xué)選報100m、400m、800m三個項目,每項均有一人報名,且每人至多報一項,共有多少種報名方法?(3)若甲、乙、丙、丁名同學(xué)爭奪100m、400m、800m三項冠軍,共有多少種可能的結(jié)果?22.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,過點F且斜率大于0的直線交拋物線C于A,B兩點(其中A在B的上方),過線段AB的中點M且與x軸平行的直線依次交直線OA、OB,l于點P、Q、N(1)試探索PM與NQ長度的大小關(guān)系,并證明你的結(jié)論;(2)當(dāng)P、Q是線段MN的三等分點時,求直線AB的斜率;(3)當(dāng)P、Q不是線段MN的三等分點時,證明:以點Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】如圖所示,以為坐標(biāo)原點,所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標(biāo)原點,所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.2、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C3、C【解析】依題意,直線與直線互相垂直,,,故選4、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當(dāng)時,,當(dāng)時,.∴當(dāng)時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.5、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C6、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機取一實數(shù),則實數(shù)滿足不等式的概率為故選:B7、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負(fù)),故.故選:D.8、C【解析】利用等差數(shù)列的通項公式即可求解【詳解】設(shè)數(shù)列,,,,是首項為,公差d=-4的等差數(shù)列{},,令,得故選:C9、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C10、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B11、A【解析】利用導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系及導(dǎo)數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.12、D【解析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】①當(dāng)D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當(dāng)D為中點,且A,B,C,D四點共面時,連結(jié)BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點時,h有最大值;當(dāng)A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.14、【解析】利用導(dǎo)數(shù)法求解.【詳解】因為函數(shù),所以,當(dāng)時,,所以的單調(diào)增區(qū)間是,故答案為:15、18【解析】本題應(yīng)注意分情況討論,即前五場甲隊獲勝的兩種情況,應(yīng)用獨立事件的概率的計算公式求解.題目有一定的難度,注重了基礎(chǔ)知識、基本計算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時,甲隊以獲勝的概率是前四場中有一場主場輸,第五場贏時,甲隊以獲勝的概率是綜上所述,甲隊以獲勝的概率是【點睛】由于本題題干較長,所以,易錯點之一就是能否靜心讀題,正確理解題意;易錯點之二是思維的全面性是否具備,要考慮甲隊以獲勝的兩種情況;易錯點之三是是否能夠準(zhǔn)確計算16、【解析】利用導(dǎo)數(shù)求出切線的斜率即得解.【詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為18,最小值為.【解析】(1)解方程即得解;(2)利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間分析即得解.【小問1詳解】解:因為,所以,因為在處有極值,所以,即,所以.經(jīng)檢驗,當(dāng)時,符合題意.所以.【小問2詳解】解:由(1)可知,所以,令,得,當(dāng)時,由得,;由得,或.所以函數(shù)在上遞增,在上遞減,在上遞增,又.所以的最小值為,又,所以的最大值為,所以在的最大值為18,最小值為.18、(1);(2)直線恒過定點.【解析】(1)根據(jù)橢圓的焦距可求出,由橢圓的面積等于得,求出,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線,,進(jìn)而寫出為,兩點坐標(biāo),將直線與橢圓的方程聯(lián)立,根據(jù)韋達(dá)定理求,,由三點共線可知,將,代入并化簡,得到的關(guān)系式,分析可知經(jīng)過的定點坐標(biāo).【詳解】(1)橢圓的面積等于,,,橢圓的焦距為,,,橢圓方程為(2)設(shè)直線,,則,,三點共線,得,直線與橢圓交于兩點,,,,由,得,,,代入中,,,當(dāng),直線方程為,則重合,不符合題意;當(dāng)時,直線,所以直線恒過定點.19、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利用面積公式計算即得結(jié)果;(2)根據(jù)等差數(shù)列得到,再結(jié)合余弦定理進(jìn)行運算得到關(guān)于b的關(guān)系,求值即可.【詳解】(1)由得,所以,所以,所以,所以;(2)因為a、b、c成等差數(shù)列,所以,由余弦定理得,即,解得.20、(1);(2).【解析】(1)利用代入法,結(jié)合焦點的坐標(biāo)、橢圓中的關(guān)系進(jìn)行求解即可;(2)根據(jù)直線l是否存在斜率分類討論,結(jié)合一元二次方程根的判別式、根與系數(shù)關(guān)系、弦長公式、基本不等式進(jìn)行求解即可.【小問1詳解】依題意:,解得,,∴橢圓E的方程為;【小問2詳解】當(dāng)直線l的斜率存在時,設(shè),,由得由得.由,得當(dāng)且僅當(dāng),即時等號成立當(dāng)直線l的斜率不存在時,,∴的最大值為21、(1)81種;(2)24種;(3)64種【解析】(1)利用分步計數(shù)原理可求報名方法總數(shù).(2)利用分步計數(shù)原理可求報名方法總數(shù).(3)利用分步計數(shù)原理可求報名方法總數(shù).【詳解】(1)要完成的是“4名同學(xué)每人從三個項目中選一項報名”這件事,因為每人必報一項,4人都報完才算完成,所以按人分步,且分為四步,又每人可在三項中選一項,選法為3種,所以共有(種)報名方法(2)每項限報一人,且每人至多報一項,因此100m項目有4種選法,400m項目有3種選法,800m項目只有2種選法.根據(jù)分步乘法計數(shù)原理,可得不同的報名方法有(種)(3)要完成的是“三個項目冠軍的獲取”這件事,因為每項冠軍只能有一人獲得,三項冠軍都有得主,這件事才算完成,所以應(yīng)以“確定三項冠軍得主”為線索進(jìn)行分步,而每項冠軍的得主有4種可能結(jié)果,所以共有(種)可能的結(jié)果22、(1),證明見解析(2)(3)證明見解析【解析】(1)根據(jù)已知條件設(shè)出直線方程及,與拋物線的方程聯(lián)立,利用韋達(dá)定理和中點坐標(biāo)公式,三點共線的性質(zhì)即可求解;(2)根據(jù)已知條件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論