2025屆河南省平頂山市許昌市汝州市高二上數(shù)學期末達標檢測試題含解析_第1頁
2025屆河南省平頂山市許昌市汝州市高二上數(shù)學期末達標檢測試題含解析_第2頁
2025屆河南省平頂山市許昌市汝州市高二上數(shù)學期末達標檢測試題含解析_第3頁
2025屆河南省平頂山市許昌市汝州市高二上數(shù)學期末達標檢測試題含解析_第4頁
2025屆河南省平頂山市許昌市汝州市高二上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省平頂山市,許昌市,汝州市高二上數(shù)學期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中,內角所對的邊分別,若,,,則()A. B.C. D.2.函數(shù)在上的極大值點為()A. B.C. D.3.已知m是2與8的等比中項,則圓錐曲線x2﹣=1的離心率是()A.或 B.C. D.或4.數(shù)學美的表現(xiàn)形式不同于自然美或藝術美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結論的個數(shù)為()A. B.C. D.5.已知直線過點,,則直線的方程為()A. B.C. D.6.拋物線的準線方程為()A. B.C. D.7.在區(qū)間上隨機取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.8.已知點F是雙曲線的左焦點,點E是該雙曲線的右頂點,過F作垂直于x軸的直線與雙曲線交于G、H兩點,若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.9.已知點分別為圓與圓的任意一點,則的取值范圍是()A. B.C. D.10.如圖,在三棱錐中,兩兩垂直,且,點E為中點,若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.11.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.12.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或3二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上的最大值是,則__________14.甲乙參加摸球游戲,袋子中裝有3個黑球和1個白球,球的大小、形狀、質量等均一樣,若從袋中有放回地取1個球,再取1個球,若取出的兩個球同色,則甲勝,若取出的兩個球不同色則乙勝,求乙獲勝的概率為_____15.已知函數(shù),則的值為______16.設x,y滿足約束條件則的最大值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知△ABC的內角A,B,C的對邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△ABC面積的最大值.18.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.19.(12分)已知命題p:方程的曲線是焦點在y軸上的雙曲線;命題q:方程無實根.若p或q為真,¬q為真,求實數(shù)m的取值范圍.20.(12分)函數(shù).(1)當時,解不等式;(2)若不等式對任意恒成立,求實數(shù)a的取值范圍.21.(12分)已知橢圓:的左、右焦點分別為,,離心率等于,點,且的面積等于(1)求橢圓的標準方程;(2)已知斜率存在且不為0的直線與橢圓交于A,B兩點,當點A關于y軸的對稱點在直線PB上時,直線是否過定點?若過定點,求出此定點;若不過,請說明理由22.(10分)在中,角、、所對的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用正弦定理可直接求得結果.【詳解】在中,由正弦定理得:.故選:B.2、C【解析】求出函數(shù)的導數(shù),利用導數(shù)確定函數(shù)的單調性,即可求出函數(shù)的極大值點【詳解】,∴當時,,單調遞減,當時,,單調遞增,當時,,單調遞減,∴函數(shù)在的極大值點為故選:C3、A【解析】利用等比數(shù)列求出m,然后求解圓錐曲線的離心率即可【詳解】解:m是2與8的等比中項,可得m=±4,當m=4時,圓錐曲線為雙曲線x2﹣=1,它的離心率為:,當m=-4時,圓錐曲線x2﹣=1為橢圓,離心率:,故選:A4、C【解析】結合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內的圖像上,因為曲線的第一象限內的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.5、C【解析】根據(jù)兩點的坐標和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C6、A【解析】將拋物線的方程化成標準形式,即可得到答案;【詳解】拋物線的方程化成標準形式,準線方程為,故選:A.7、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D8、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當時,,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.9、B【解析】先判定兩圓的位置關系為相離的關系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.10、D【解析】由題意可證平面,取BD的中點F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【詳解】如圖,∵,點為的中點,∴,,∵,,兩兩垂直,,∴平面,取BD的中點F,連接EF,∴為直線與所成的角,且,由題意可知,,設,連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:11、C【解析】共漸近線的雙曲線方程,設,把點代入方程解得參數(shù)即可.【詳解】設,把點代入方程解得參數(shù),所以化簡得方程故選:C.12、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】由函數(shù),又由,則,根據(jù)二次函數(shù)的性質,即可求解函數(shù)的最大值,得到答案.【詳解】由函數(shù),因為,所以,當時,則,所以.【點睛】本題主要考查了余弦函數(shù)的性質,以及二次函數(shù)的圖象與性質,其中解答中根據(jù)余弦函數(shù),轉化為關于的二次函數(shù),利用二次函數(shù)的圖象與性質是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.14、##0.375【解析】先算出有放回地取兩次的取法數(shù),再算出取出兩球不同色的取法數(shù),根據(jù)古典概型的概率公式計算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:15、【解析】先求出的導函數(shù),然后將代入可得答案.【詳解】,所以故答案為:16、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標代入目標函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)對,利用正弦定理和誘導公式整理化簡得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問1詳解】對于.由正弦定理知:即.所以.所以.所以因為,,所以.所以.因為,所以.【小問2詳解】因為,由正弦定理知:.由余弦定理知:,所以.當且僅當時,等號成立,所以ab的最大值為1.所以,即面積的最大值為.18、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進行求解,最終求出結果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當真且假時,且,得;②當假且真時,且,得.所以,的取值范圍為.19、.【解析】計算命題p:;命題;根據(jù)p或q為真,¬q為真得到真假,計算得到答案.【詳解】若方程的曲線是焦點在軸上的雙曲線,則滿足,即,即,即若方程無實根,則判別式,即,得,即,即若為真,則為假,同時若或為真,則為真命題,即,得,即實數(shù)的取值范圍是.【點睛】本題考查了命題的真假計算參數(shù)范圍,根據(jù)條件判斷出真假是解題的關鍵.20、(1);(2).【解析】(1)由題設,原不等式等價于,分類討論即可得出結論;(2)不等式對任意恒成立,即,即可求實數(shù)a的取值范圍.【詳解】(1)當時,原不等式等價于,當時,,解得,即;當時,恒成立,即;當時,,解得,即;綜上,不等式的解集為;(2),,即或,解得,∴a取值范圍是.21、(1)(2)【解析】(1)用待定系數(shù)法求出橢圓的標準方程;(2)設直線的方程為,設,用“設而不求法”表示出和.表示出直線PB,把A關于y軸的對稱點為帶入后整理化簡,即可得到,從而可以判斷出直線恒過定點.【小問1詳解】由題意可得:,解得:,所以橢圓的標準方程為:.【小問2詳解】由題意可知,直線的斜率存在且不為0,設直線的方程為,設設點A關于y軸的對稱點為.聯(lián)立方程組,消去y可得:,所以.因為直線PB的方程為,且點D在直線PB上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論