2025屆陜西省西安市第七十中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
2025屆陜西省西安市第七十中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
2025屆陜西省西安市第七十中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
2025屆陜西省西安市第七十中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
2025屆陜西省西安市第七十中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆陜西省西安市第七十中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.2.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件3.函數(shù)直線與的圖象相交于A、B兩點(diǎn),則的最小值為()A.3 B.C. D.4.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點(diǎn)的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.5.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.6.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實(shí)美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點(diǎn)間的距離不超過;③若是曲線上任意一點(diǎn),則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.7.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.48.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.29.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.10.設(shè),若函數(shù),有大于零的極值點(diǎn),則A. B.C. D.11.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動點(diǎn),則的最小值為().A. B.C. D.12.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線上一點(diǎn)到準(zhǔn)線的距離為,到直線:的距離為,則的最小值為__________14.已知橢圓C:,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在C上,則_________.15.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______16.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,動點(diǎn)到定點(diǎn)的距離比到軸的距離大,設(shè)動點(diǎn)的軌跡為曲線,分別過曲線上的兩點(diǎn),做曲線的兩條切線,且交于點(diǎn),與直線交于兩點(diǎn)(1)求曲線的方程;(2)求面積的最小值.18.(12分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個零點(diǎn),且最小值為.①求證:;②當(dāng)且僅當(dāng)a在什么范圍內(nèi)時,函數(shù)在區(qū)間上存在最小值?(2)若任意實(shí)數(shù)t,在閉區(qū)間上總存在兩實(shí)數(shù)m,n,使得成立,求實(shí)數(shù)a的取值范圍.19.(12分)直線經(jīng)過點(diǎn),且與圓相交與兩點(diǎn),截得的弦長為,求的方程.20.(12分)已知直線過點(diǎn)(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標(biāo)軸的截距相等,求直線的方程21.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時,已知是假命題,是真命題,求x的取值范圍.22.(10分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】直接利用空間向量基本定理求解即可【詳解】因?yàn)樵谄叫辛骟w中,,,,所以,故選:B2、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.3、C【解析】先求出AB坐標(biāo),表示出,規(guī)定函數(shù),其中,利用導(dǎo)數(shù)求最小值.【詳解】聯(lián)立解得可得點(diǎn).聯(lián)立解得可得點(diǎn).由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點(diǎn)睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.4、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得5、B【解析】雙曲線的離心率為,漸進(jìn)性方程為,計(jì)算得,故漸進(jìn)性方程為.【考點(diǎn)定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).6、C【解析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點(diǎn)間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點(diǎn)到直線的距離,然后利用圓上一點(diǎn)到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點(diǎn)間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因?yàn)榈街本€的距離為,所以,當(dāng)最小時,易知在曲線的第一象限內(nèi)的圖像上,因?yàn)榍€的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.7、C【解析】直接運(yùn)用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C8、A【解析】由雙曲線方程,根據(jù)其漸近線方程有,求參數(shù)值即可.【詳解】由漸近線,結(jié)合雙曲線方程,∴,可得.故選:A.9、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(diǎn)(2a,2a)在雙曲線上,代入雙曲線的標(biāo)準(zhǔn)方程,結(jié)合a,b,c的關(guān)系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點(diǎn)是雙曲線與截面正方形的交點(diǎn)之一,設(shè)雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點(diǎn),且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C10、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點(diǎn)即有正根,當(dāng)有成立時,顯然有,此時.由,得參數(shù)a的范圍為.故選B考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值11、A【解析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對稱點(diǎn),利用連點(diǎn)之間相對最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對稱點(diǎn)為,連接,則,于是故的最小值為故選:A【點(diǎn)睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題12、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因?yàn)?,且,所?故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,過焦點(diǎn)F作直線:的垂線,此時取得最小值,利用點(diǎn)到直線的距離公式,即可求解.【詳解】由題意,拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,如圖所示,根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,過焦點(diǎn)F作直線:的垂線,此時取得最小值,由點(diǎn)到直線的距離公式可得,即的最小值為3.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,以及拋物線的最值問題,其中解答中根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,利用點(diǎn)到直線的距離公式求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及運(yùn)算與求解能力,屬于中檔試題.14、【解析】設(shè)M,N的中點(diǎn)坐標(biāo)為P,,則;由于,化簡可得,根據(jù)橢圓的定義==6,所以12.考點(diǎn):1.橢圓的定義;2.兩點(diǎn)距離公式.15、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過點(diǎn)O且與CD垂直的直線為y軸,以過點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:16、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意可得化簡可得答案;(2)求出、方程并得到、點(diǎn)坐標(biāo),再聯(lián)立,方程求出交點(diǎn)和、點(diǎn)到的距離,可得,設(shè),與拋物線方程聯(lián)立利用韋達(dá)定理得到,設(shè),記,利用導(dǎo)數(shù)可得答案..【小問1詳解】由題意可知:,即:化簡得:;【小問2詳解】由題意可知:,,,過點(diǎn)的切線斜率為,方程為:①,令,,則,同理:方程為:②,,聯(lián)立①②得:,的交點(diǎn),,點(diǎn)到的距離,所以③,設(shè):,則,整理得,所以,由韋達(dá)定理得:,,代入③式得:,設(shè),記,則,令得(舍負(fù)),時,單調(diào)遞減:時,單調(diào)遞增,所以,當(dāng)且僅當(dāng)時的最小值為.18、(1)①證明見解析;②(2)【解析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實(shí)數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有成立,設(shè)﹐結(jié)合二次函數(shù)的圖象與性質(zhì),分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因?yàn)樽钚≈禐?,可得,即,因?yàn)椋愿鶕?jù)求根公式得,所以.②由①知,區(qū)間因?yàn)?,對稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因?yàn)?,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實(shí)數(shù),使得成立,則在區(qū)間上,有成立,設(shè)﹐函數(shù)對稱軸為①當(dāng)即時,在上單調(diào)減,,此時;②當(dāng)即時,,此時③當(dāng)即時,,此時;④當(dāng)即時,,此時;綜合①②③④得,且最小值為,因?yàn)閷θ我鈱?shí)數(shù)t,都有,所以只需,即,所以實(shí)數(shù)a的取值范圍.19、或【解析】直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點(diǎn)到直線的距離公式列方程求出直線斜率,由點(diǎn)斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因?yàn)閳A的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達(dá)定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.20、(1)(2)或【解析】(1)由兩條直線垂直可設(shè)直線的方程為,將點(diǎn)的坐標(biāo)代入計(jì)算即可;(2)當(dāng)直線過原點(diǎn)時,根據(jù)直線的點(diǎn)斜式方程即可得出結(jié)果;當(dāng)直線不過原點(diǎn)時可設(shè)直線的方程為,將點(diǎn)的坐標(biāo)代入計(jì)算即可.【小問1詳解】解:因?yàn)橹本€與直線垂直所以,設(shè)直線的方程為,因?yàn)橹本€過點(diǎn),所以,解得,所以直線的方程為【小問2詳解】解:當(dāng)直線過原點(diǎn)時,斜率為,由點(diǎn)斜式求得直線的方程是,即當(dāng)直線不過原點(diǎn)時,設(shè)直線的方程為,把點(diǎn)代入方程得,所以直線的方程是綜上,所求直線的方程為或21、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當(dāng)時,有,由題意知,p、q一真一假,當(dāng)p真q假時,,當(dāng)p假q真

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論