版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海中學、復旦附中等八校2025屆數(shù)學高二上期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題2.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件3.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.4.已知點B是A(3,4,5)在坐標平面xOy內(nèi)的射影,則||=()A. B.C.5 D.55.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.6.不等式的解集是()A. B.C.或 D.或7.某種心臟手術成功率為0.9,現(xiàn)采用隨機模擬方法估計“3例心臟手術全部成功”的概率.先利用計算器或計算機產(chǎn)生09之間取整數(shù)值的隨機數(shù),由于成功率是0.9,故我們用0表示手術不成功,1,2,3,4,5,6,7,8,9表示手術成功,再以每3個隨機數(shù)為一組,作為3例手術的結果.經(jīng)隨機模擬產(chǎn)生如下10組隨機數(shù):812,832,569,683,271,989,730,537,925,907,由此估計“3例心臟手術全部成功”的概率為()A.0.9 B.0.8C.0.7 D.0.68.已知動圓過定點,并且與定圓外切,則動圓的圓心的軌跡是()A.拋物線 B.橢圓C.雙曲線 D.雙曲線的一支9.已知拋物線的焦點為,為拋物線上第一象限的點,若,則直線的傾斜角為()A. B.C. D.10.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.11.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中的“落霞與孤鶩齊飛,秋水共長天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點,,處測得閣頂端點的仰角分別為,,.且米,則滕王閣高度___________米.14.曲線圍成的圖形的面積是__________15.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.16.“第七屆全國畫院美術作品展”于2021年12月2日至2022年2月20日在鄭州美術館展出.已知某油畫作品高2米,寬6米,畫的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應為___________米.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線上,且圓與軸相切于點(1)求圓的標準方程;(2)若直線與圓相交于,兩點,求的面積18.(12分)已知.(1)當時,求曲線在點處的切線方程;(2)若在處取得極值,求在上的最小值.19.(12分)在△ABC中,角A,B,C的對邊分別是,已知(1)求角B的大??;(2)求三角形ABC的面積.20.(12分)在對某老舊小區(qū)污水分流改造時,需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價為400元/平方米,中間兩道隔墻的建造單價為248元/平方米,池底的建造單價為80元/平方米,池蓋的建造單價為100元/平方米,建造此污水處理池相關人員的勞務費以及其他費用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關規(guī)定執(zhí)行,計算時忽略不計)(1)現(xiàn)有財政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設計污水處理池的長和寬,使總費用最低?最低費用為多少萬元?21.(12分)某公司有員工人,對他們進行年齡和學歷情況調(diào)查,其結果如下:現(xiàn)從這名員工中隨機抽取一人,設“抽取的人具有本科學歷”,“抽取的人年齡在歲以下”,試求:(1);(2);(3).22.(10分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)復合命題的真假表即可得出結果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個真命題,所以為真命題,即為假命題,為真命題.故選:A2、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.3、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設平面ABC的法向量為,而,,則,即有,不妨令,則,故,設三棱柱的高為h,則,故選:D.4、C【解析】先求出B(3,4,0),由此能求出||【詳解】解:∵點B是點A(3,4,5)在坐標平面Oxy內(nèi)的射影,∴B(3,4,0),則||==5故選:C5、A【解析】求出函數(shù)的導函數(shù),再求出,然后利用導數(shù)的幾何意義求解作答.【詳解】函數(shù),求導得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A6、A【解析】確定對應二次方程的解,根據(jù)三個二次的關系寫出不等式的解集【詳解】,即為,故選:A7、B【解析】由題可知10組隨機數(shù)中表示“3例心臟手術全部成功”的有8組,即求.【詳解】由題意,10組隨機數(shù):812,832,569,683,271,989,730,537,925,907,表示“3例心臟手術全部成功”的有:812,832,569,683,271,989,537,925,故8個,故估計“3例心臟手術全部成功”的概率為.故選:B.8、D【解析】結合雙曲線定義的有關知識確定正確選項.【詳解】圓圓心為,半徑為,依題意可知,結合雙曲線的定義可知,的軌跡為雙曲線的一支.故選:D9、C【解析】設點,其中,,根據(jù)拋物線的定義求得點的坐標,即可求得直線的斜率,即可得解.【詳解】設點,其中,,則,可得,則,所以點,故,因此,直線的傾斜角為.故選:C.10、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A11、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計算說明“若q則p”的真假即可判斷作答.【詳解】因為,由得:,則,當且僅當,即時取等號,因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A12、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,由邊角關系可得,,,在和中,利用余弦定理列方程,結合可解得的值,進而可得長.【詳解】設,因為,,,所以,,,.在中,,即①.,在中,,即②,因為,所以①②兩式相加可得:,解得:,則,故答案為:.14、【解析】當,時,已知方程是,即.它對應的曲線是第一象限內(nèi)半圓?。òǘ它c),它的圓心為,半徑為.同理,當,;,;,時對應的曲線都是半圓弧(如圖).它所圍成的面積是.故答案為15、##【解析】利用列舉法,結合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:16、【解析】設,進而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設,則,,所以,當且僅當時取“=”.所以該游客離墻距離為米時,觀賞視角最大.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解析】(1)由已知設圓心,再由相切求圓半徑從而得解.(2)求弦長,再求點到直線的距離,進而可得解.【小問1詳解】因為圓心在直線上,所以設圓心,又圓與軸相切于點,所以,即圓與軸相切,則圓的半徑,于是圓的方程為【小問2詳解】圓心到直線的距離,則,又到直線的距離為,所以.18、(1);(2).【解析】(1)利用導數(shù)的幾何意義求切線的斜率,再利用點斜式方程即可求出切線方程;(2)根據(jù)極值點求出的值,根據(jù)導數(shù)值的正負判斷函數(shù)的單調(diào)性,即可求出最小值.【小問1詳解】∵,,∴∴∴在處的切線為,即;【小問2詳解】∵,由題可知,∴,∴單調(diào)遞增,單調(diào)遞減,∵,,∴.19、(1)B=300(2)【解析】分析:(1)由同角三角函數(shù)關系先求,由正弦定理可求值,從而可求的值;(2)先求得的值,代入三角函數(shù)面積公式即可得結果.詳解:(1)由正弦定理又∴B為銳角sinA=,由正弦定理B=300(2),∴.點睛:以三角形和為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導公式以及二倍角公一定要熟練掌握并靈活應用,特別是二倍角公式的各種變化形式要熟記于心.20、(1)不夠;(2)將污水處理池建成長為16.2米,寬為10米時,建造總費用最低,最低費用為90000元.【解析】(1)根據(jù)題意結合單價直接計算即可得出;(2)設污水處理池的寬為米,表示出總費用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長為(米),建造總費用為:(元)因為,所以如果污水處理池的寬建成9米,那么9萬元的撥款是不夠用的.【小問2詳解】設污水處理池的寬為米,建造總費用為元,則污水處理池的長為米.則因為,等號僅當,即時成立,所以時建造總費用取最小值90000,所以將污水處理池建成長為16.2米,寬為10米時,建造總費用最低,最低費用為90000元.21、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海南省安全員A證考試題庫及答案
- 【小學課件】體積單位的換算
- 《藥品管理制度》課件
- 《電氣設備故障診斷》課件
- 《紅樓夢》的英文簡介
- 單位人力資源管理制度呈現(xiàn)匯編十篇
- 單位管理制度展示匯編職工管理篇十篇
- 單位管理制度展示大全人員管理篇十篇
- 智慧農(nóng)貿(mào)冷鏈物流基地項目可行性研究報告模板立項審批
- 單位管理制度收錄大合集職員管理十篇
- 中東及非洲空氣制水機行業(yè)現(xiàn)狀及發(fā)展機遇分析2024-2030
- 煤礦立井井筒及硐室設計規(guī)范
- 房地產(chǎn)項目開發(fā)合作協(xié)議書
- QCT457-2023救護車技術規(guī)范
- 《中國大熊貓》課件大綱
- 新課標背景下的大單元教學研究:國內(nèi)外大單元教學發(fā)展與演進綜述
- (正式版)HGT 4339-2024 機械設備用涂料
- 2024年醫(yī)療器械銷售總結
- 基于物聯(lián)網(wǎng)的支護機械遠程監(jiān)控系統(tǒng)
- SLT278-2020水利水電工程水文計算規(guī)范
- 心靈養(yǎng)生的療愈之道
評論
0/150
提交評論