廣東省茂名市電白縣第一中學2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第1頁
廣東省茂名市電白縣第一中學2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第2頁
廣東省茂名市電白縣第一中學2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第3頁
廣東省茂名市電白縣第一中學2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第4頁
廣東省茂名市電白縣第一中學2025屆高二數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省茂名市電白縣第一中學2025屆高二數(shù)學第一學期期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是函數(shù)的導函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.2.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.23.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.4.已知數(shù)列的通項公式為,其前項和為,則滿足的的最小值為()A.30 B.31C.32 D.335.一組樣本數(shù)據(jù):,,,,,由最小二乘法求得線性回歸方程為,若,則實數(shù)m的值為()A.5 B.6C.7 D.86.已知函數(shù),若在處取得極值,且恒成立,則實數(shù)的最大值為()A. B.C. D.7.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.88.等差數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.279.已知的二項展開式的各項系數(shù)和為32,則二項展開式中的系數(shù)為A5 B.10C.20 D.4010.經(jīng)過點且圓心是兩直線與的交點的圓的方程為()A. B.C. D.11.已知等差數(shù)列滿足,,則()A. B.C. D.12.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是二、填空題:本題共4小題,每小題5分,共20分。13.將全體正整數(shù)排成一個三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個數(shù)為__________.14.已知直線與直線垂直,則__________15.若函數(shù)的遞增區(qū)間是,則實數(shù)______.16.美學四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學.素描是學習繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學習幾何體結(jié)構(gòu)素描是學習素描最重要的一步.某同學在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為45°的直角梯形(如圖所示),則該橢圓的離心率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公比的等比數(shù)列和等差數(shù)列滿足:,,其中,且是和的等比中項(1)求數(shù)列與的通項公式;(2)記數(shù)列的前項和為,若當時,等式恒成立,求實數(shù)的取值范圍18.(12分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.19.(12分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標原點),.(1)求橢圓C的標準方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.20.(12分)已知圓C經(jīng)過點,,且它的圓心C在直線上.(1)求圓C的方程;(2)過點作圓C的兩條切線,切點分別為M,N,求三角形PMN的面積.21.(12分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設(shè)的前項和為,令,求證:.22.(10分)已知函數(shù)(1)求關(guān)于x的不等式的解集;(2)若對任意的,恒成立,求實數(shù)a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先由圖像分析出的正負,直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調(diào)遞減,在區(qū)間(0,2)上單調(diào)遞增,即當時,;當x∈(0,2)時,.因為可化為或,解得:0<x<2或x<0,所以不等式的解集為.故選:C2、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關(guān)系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點,,切線長的最小值為:,故選:D.3、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A4、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C5、B【解析】求出樣本的中心點,再利用回歸直線必過樣本的中心點計算作答.【詳解】依題意,,則這個樣本的中心點為,因此,,解得,所以實數(shù)m的值為6.故選:B6、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,所以,即得,故選:D7、D【解析】先求出拋物線的焦點和準線,利用拋物線的定義將轉(zhuǎn)化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準線方程為,設(shè)點到準線的距離為,則,則由拋物線的定義可知∵,當點、、三點共線時等號成立,∴,故選:.8、B【解析】根據(jù)等差數(shù)列的前項和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因為為等差數(shù)列的前n項和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.9、B【解析】首先根據(jù)二項展開式的各項系數(shù)和,求得,再根據(jù)二項展開式的通項為,求得,再求二項展開式中的系數(shù).【詳解】因為二項展開式的各項系數(shù)和,所以,又二項展開式的通項為=,,所以二項展開式中的系數(shù)為.答案選擇B【點睛】本題考查二項式展開系數(shù)、通項等公式,屬于基礎(chǔ)題10、B【解析】求出圓心坐標和半徑后,直接寫出圓的標準方程.【詳解】由得,即所求圓的圓心坐標為.由該圓過點,得其半徑為1,故圓的方程為.故選:B.【點睛】本題考查了圓的標準方程,屬于基礎(chǔ)題.11、D【解析】根據(jù)等差數(shù)列的通項公式求出公差,再結(jié)合即可得的值.【詳解】因為是等差數(shù)列,設(shè)公差為,所以,即,所以,所以,故選:D.12、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、38【解析】根據(jù)數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個數(shù),第行有個數(shù),并且數(shù)字從開始,每次遞增.前行共有個數(shù),第行從左向右的最后一個數(shù)是,所以第行從左向右的第個數(shù)為.故答案為:14、-3【解析】因為直線與直線垂直,所以考點:本題考查兩直線垂直的充要條件點評:若兩直線方程分別為,則他們垂直的充要條件是15、【解析】求得二次函數(shù)的單調(diào)增區(qū)間,即可求得參數(shù)的值.【詳解】因為二次函數(shù)開口向上,對稱軸為,故其單調(diào)增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.16、【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)已知條件可得出關(guān)于方程,解出的值,可求得的值,即可得出數(shù)列與的通項公式;(2)求得,利用錯位相減法可求得,分析可知數(shù)列為單調(diào)遞增數(shù)列,對分奇數(shù)和偶數(shù)兩種情況討論,結(jié)合參變量分離法可得出實數(shù)的取值范圍.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,,且是和的等比中項,所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因為,①,②②①得因為,即對恒成立,所以當且,,故數(shù)列為單調(diào)遞增數(shù)列,當為偶數(shù)時,,所以;當為奇數(shù)時,,所以,即.綜上可得18、(1)證明見解析(2)【解析】(1)由圓的性質(zhì)可得,再由線面垂直的性質(zhì)可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結(jié)合已知條件可得平面PBC,由線面垂直的性質(zhì)可得結(jié)論;(2)由已知條件結(jié)合基本不等式可得當三棱錐的體積最大時,是等腰直角三角形,,從而以O(shè)B,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC,平面ABC,所以.因為,且AB,平面PAB,所以平面PAB.因為平面PAB,所以.因為,,且BC,平面PBC,所以平面PBC.因為平面PBC,所以.【小問2詳解】解:因為,,所以,所以三棱錐的體積,(當且僅當“”時等號成立).所以當三棱錐的體積最大時,是等腰直角三角形,.所以以O(shè)B,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,則,,,.因為∽,所以,因為,,所以,所以,.設(shè)向量為平面的一個法向量,則即令得,.向量為平面ABC的一個法向量,.因為二面角是銳角,所以二面角的余弦值為.19、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當直線l的斜率不存在時,.②當直線l的斜率存在時,設(shè)斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點在橢圓內(nèi),∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形20、(1);(2).【解析】(1)由題設(shè)知,設(shè)圓心,應用兩點距離公式列方程求參數(shù)a,進而確定圓心坐標、半徑,寫出圓C的方程;(2)利用兩點距離公式、切線的性質(zhì)可得、,再應用三角形面積公式求三角形PMN的面積.【小問1詳解】由已知,可設(shè)圓心,且,從而有,解得.所以圓心,半徑.所以,圓C的方程為.【小問2詳解】連接PC,CM,CN,MN,由(1)知:圓心,半徑.所以.又PM,PN是圓C的切線,所以,,則,,所以,所以.21、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關(guān)系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當n≥2時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論