版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆貴州省六盤水市第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓,則圓C關(guān)于直線對稱的圓的方程為()A. B.C. D.2.設(shè),為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.3.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.4.從0,1,2,3,4,5這六個數(shù)字中,任取兩個不同數(shù)字構(gòu)成平面直角坐標(biāo)系內(nèi)點的橫、縱坐標(biāo),其中不在軸上的點有()A.36個 B.30個C.25個 D.20個5.某中學(xué)的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數(shù)為()A.13 B.14C.15 D.166.下列四個命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則7.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測量彬塔的高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.8.“”是“曲線為焦點在軸上的橢圓”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件9.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點的坐標(biāo)來描述.設(shè)曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應(yīng)點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應(yīng)點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.10.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.11.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.12.設(shè)、是橢圓:的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.14.三棱錐中,、、兩兩垂直,且.給出下列四個命題:①;②;③和的夾角為;④三棱錐的體積為.其中所有正確命題的序號為______________.15.函數(shù)的圖象在點P()處的切線方程是,則_____16.雙曲線的右頂點為A,右焦點為F,過點F平行于雙曲線的一條漸近線的直線與雙曲線交于點B,則的面積為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的極大值與極小值;(2)若函數(shù)在上的最大值是最小值的3倍,求a的值.18.(12分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長19.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.20.(12分)已知圓,圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)求直線被圓截得的弦的長21.(12分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設(shè)首項為2的數(shù)列的前n項和為,前n項積為,且______(1)求數(shù)列的通項公式;(2)若數(shù)列的前n項和為,令,求數(shù)列的前n項和22.(10分)某廠接受了一項加工業(yè)務(wù),加工出來的產(chǎn)品(單位:件)按標(biāo)準(zhǔn)分為A,B,C,D四個等級.加工業(yè)務(wù)約定:對于A級品、B級品、C級品,廠家每件分別收取加工費90元,50元,20元;對于D級品,廠家每件要賠償原料損失費50元.該廠有甲、乙兩個分廠可承接加工業(yè)務(wù).甲分廠加工成本費為25元/件,乙分廠加工成本費為20元/件.廠家為決定由哪個分廠承接加工業(yè)務(wù),在兩個分廠各試加工了100件這種產(chǎn)品,并統(tǒng)計了這些產(chǎn)品的等級,整理如下:甲分廠產(chǎn)品等級的頻數(shù)分布表等級ABCD頻數(shù)40202020乙分廠產(chǎn)品等級的頻數(shù)分布表等級ABCD頻數(shù)28173421(1)分別估計甲、乙兩分廠加工出來的一件產(chǎn)品為A級品的概率;(2)分別求甲、乙兩分廠加工出來的100件產(chǎn)品的平均利潤,以平均利潤為依據(jù),廠家應(yīng)選哪個分廠承接加工業(yè)務(wù)?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求得圓的圓心關(guān)于直線的對稱點,由此求得對稱圓的方程.【詳解】設(shè)圓的圓心關(guān)于直線的對稱點為,則,所以對稱圓的方程為.故選:B2、A【解析】設(shè),表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設(shè),由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)3、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因為,且,所以.故選:B4、C【解析】根據(jù)點不在y軸上,分2類根據(jù)分類加法計數(shù)原理求解.【詳解】因為點不在軸上,所以點的橫坐標(biāo)不能為0,分兩類考慮,第一類含0且為點的縱坐標(biāo),共有個點,第二類坐標(biāo)不含0的點,共有個點,根據(jù)分類加法計數(shù)原理可得共有個點.故選:C5、C【解析】由題意可得募捐構(gòu)成了一個以10元為首項,以10元為公差的等差數(shù)列,設(shè)共募捐了天,然后建立關(guān)于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構(gòu)成了一個以10元為首項,以10元為公差的等差數(shù)列,根據(jù)題意,設(shè)共募捐了天,則,解得或(舍去),所以,故選:6、C【解析】利用不等式的性質(zhì)結(jié)合特殊值法依次判斷即可【詳解】當(dāng)c=0時,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時,,D不成立;由a>|b|知a>0,所以a2>b2,C正確故選:C7、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D8、C【解析】∵“”?“方程表示焦點在軸上的橢圓”,“方程表示焦點在軸上的橢圓”?“”,∴“”是“方程表示焦點在軸上的橢圓”的充要條件,故選C.9、C【解析】設(shè)單位圓上一點為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.10、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B11、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D12、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因為,所以,,所以所以答案選C.考點:橢圓的簡單幾何性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出橢圓和拋物線的焦點坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標(biāo)為,拋物線的焦點坐標(biāo)為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.14、①②③【解析】設(shè),以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量數(shù)量積的坐標(biāo)運算可判斷①②③④的正誤.【詳解】設(shè),由于、、兩兩垂直,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,如下圖所示:則、、、.對于①,,所以,,①正確;對于②,,,則,②正確;對于③,,,,,所以,和的夾角為,③正確;對于④,,,,則,所以,,而三棱錐的體積為,④錯誤.故答案為:①②③.【點睛】關(guān)鍵點點睛:在立體幾何中計算空間向量的相關(guān)問題,可以選擇合適的點與直線建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運算即可.15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程,即可求解.【詳解】根據(jù)導(dǎo)數(shù)的幾何意義可知,,且,所以.故答案為:16、【解析】由平行線的性質(zhì)求出斜率,由點斜式求出直線方程,然后求出交點坐標(biāo),由三角形面積公式可得結(jié)果.【詳解】雙曲線的右頂點,右焦點,,所以漸近線方程為,不妨設(shè)直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的極大值為0,的極小值為(2)2【解析】(1)先求導(dǎo)可得,再利用導(dǎo)函數(shù)判斷的單調(diào)性,進而求解;(2)由(1)可得在上的最小值為,由,,可得的最大值為,進而根據(jù)求解即可.【詳解】解:(1)當(dāng)時,,所以,令,則或,則當(dāng)和時,;當(dāng)時,,則在和上單調(diào)遞增,在上單調(diào)遞減,所以極大值為;的極小值為.(2)由題,,由(1)可得在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值即為的極小值;因為,,所以,因為,則,所以.【點睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值,考查利用導(dǎo)函數(shù)求函數(shù)的最值,考查運算能力.18、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據(jù)面面垂直的性質(zhì)和線面垂直的性質(zhì)得出線線垂直的結(jié)論,注意在書寫的時候條件不要丟就行;第二問建立空間直角坐標(biāo)系,利用法向量所成角的余弦值來求得二面角的余弦值;第三問利用向量共線的關(guān)系,得出向量的坐標(biāo),根據(jù)線面平行得出向量垂直,利用其數(shù)量積等于零,求得結(jié)果.(Ⅰ)證明:因為平面⊥平面,且平面平面,因為⊥,且平面所以⊥平面因為平面,所以⊥.(Ⅱ)解:在△中,因為,,,所以,所以⊥.所以,建立空間直角坐標(biāo)系,如圖所示所以,,,,,,.易知平面的一個法向量為.設(shè)平面的一個法向量為,則,即,令,則.設(shè)二面角的平面角為,可知為銳角,則,即二面角的余弦值為(Ⅲ)解:因為點在棱,所以,因為,所以,.又因為平面,為平面的一個法向量,所以,即,所以所以,所以.19、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標(biāo)系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為20、(1);(2)【解析】(1)由圓的一般式方程求出圓心代入直線即可求出得值,即可求解;(2)先計算圓心到直線的距離,利用即可求弦長.【詳解】(1)由圓,可得所以圓心為,半徑又圓心在直線上,即,解得所以圓的一般方程為,故圓的標(biāo)準(zhǔn)方程為(2)由(1)知,圓心,半徑圓心到直線的距離則直線被圓截得的弦的長為所以,直線被圓截得弦的長為【點睛】方法點睛:圓的弦長的求法(1)幾何法,設(shè)圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)法,設(shè)直線與圓相交于,,聯(lián)立直線與圓的方程,消去得到一個關(guān)于的一元二次方程,從而可求出,,根據(jù)弦長公式,即可得出結(jié)果.21、(1);(2).【解析】(1)選擇不同的條件,再通過構(gòu)造數(shù)列以及累乘法即可求得對應(yīng)情況下的通項公式;(2)根據(jù)(1)中所求,求得,再利用錯位相減法求其前項和即可.【小問1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時,,則,即∴,∴;當(dāng)時,也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項為2,公差為1則,∴.【小問2詳解】由(1)知當(dāng)時,,∴又∵時,,符合上式,∴∴∴而相減得∴.22、(1)甲分廠加工出來的級品的概率為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畫老虎美術(shù)課程設(shè)計
- 旅行網(wǎng)站課程設(shè)計
- 安卓游戲app課程設(shè)計
- 攝譜儀相關(guān)項目建議書
- Hexacosane-Standard-生命科學(xué)試劑-MCE
- 煤層自燃災(zāi)害課程設(shè)計
- 北京聯(lián)合大學(xué)《音視頻制作》2022-2023學(xué)年第一學(xué)期期末試卷
- 家用滴管相關(guān)項目實施方案
- 指甲消毒劑相關(guān)項目實施方案
- 毽子相關(guān)項目建議書
- 吉祥物的設(shè)計 課件 2024-2025學(xué)年人教版(2024)初中美術(shù)七年級上冊
- 中圖版2024-2025學(xué)年七年級地理上學(xué)期期中練習(xí)卷含答案
- 2024-2030年中國城市園林綠化行業(yè)市場深度調(diào)研及前景趨勢與投資發(fā)展戰(zhàn)略研究報告
- 2024浙江紹興市城市建設(shè)投資集團限公司招聘13人高頻500題難、易錯點模擬試題附帶答案詳解
- 2024年陜西省人民檢察院招考聘用聘用制書記員高頻500題難、易錯點模擬試題附帶答案詳解
- 實驗室生物安全應(yīng)急預(yù)案
- 5.1 法不可違(課件) 2024-2025學(xué)年八年級道德與法治上冊 (統(tǒng)編版)
- 政府采購-課件
- 倉庫提案改善方案
- 地球和地球儀─經(jīng)線和緯線 說課課件-2024-2025學(xué)年人教版(2024)七年級地理上冊
- 2024義務(wù)教育《道德與法治課程標(biāo)準(zhǔn)》(2022 年版)必考題庫及答案
評論
0/150
提交評論