版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省呂梁育星中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為,其導(dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.52.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或3.已知函數(shù),,若對任意的,,都有成立,則實數(shù)的取值范圍是()A. B.C. D.4.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.5.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當時,n的最大值是()A.8 B.9C.10 D.116.()A.-2 B.0C.2 D.37.設(shè),,,則,,大小關(guān)系是A. B.C. D.8.設(shè)命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件9.若數(shù)列對任意滿足,下面選項中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列10.一直線過點,則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°11.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.12.(2016新課標全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點,點M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應(yīng)該是__________14.已知函數(shù),,若,,使得,則實數(shù)a的取值范圍是______15.如圖①,用一個平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數(shù)學(xué)家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個大小不同的球,使得它們分別與圓錐的側(cè)面,截面相切,兩個球分別與截面相切于,在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于,由球和圓的幾何性質(zhì),可以知道,,于是.由的產(chǎn)生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點的橢圓.如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.16.曲線的長度為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點是橢圓E:一點,且橢圓的離心率為.(1)求此橢圓E方程;(2)設(shè)橢圓的左頂點為A,過點A向上作一射線交橢圓E于點B,以AB為邊作矩形ABCD,使得對邊CD經(jīng)過橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問:矩形ABCD能否為正方形?若能,求出直線AB的方程;若不能,請說明理由.18.(12分)如圖是一個正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點.(1)證明:平面;(2)求此幾何體的體積.19.(12分)已知橢圓C:的長軸長為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標原點,斜率為k的直線l經(jīng)過點,已知直線l與橢圓C相交于點A,B,求面積的最大值20.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.21.(12分)已知圓,P(2,0),M點是圓Q上任意一點,線段PM的垂直平分線交半徑MQ于點C,當M點在圓上運動時,點C的軌跡為曲線C(1)求曲線C方程;(2)已知直線l:x=8,A、B是曲線C上的兩點,且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值22.(10分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要條件,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.2、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C3、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.4、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B5、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.6、C【解析】根據(jù)定積分公式直接計算即可求得結(jié)果【詳解】由故選:C7、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題8、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合兩直線平行的性質(zhì)進行求解即可.【詳解】當時,直線的方程為,直線方程為,此時,直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.9、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當時,數(shù)列是等差數(shù)列,當時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D10、A【解析】根據(jù)斜率公式求得直線的斜率,得到,即可求解.【詳解】設(shè)直線的傾斜角為,由斜率公式,可得,即,因為,所以,即此直線的傾斜角為.故選:A.11、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.12、A【解析】由已知可得,故選A.考點:1、雙曲線及其方程;2、雙曲線的離心率.【方法點晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計算量,提高解題速度.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.14、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當時,,所以在上單調(diào)遞減,所以,即,由,得,當時,,所以在上單調(diào)遞增,所以,即,因為,,使得,所以,解得,故答案為:15、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點為橢圓的一個焦點,求出,得出離心率.【詳解】設(shè)球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據(jù)橢圓在圓錐中截面與二球相切的切點為橢圓的焦點知:球O與相切的切點為橢圓的一個焦點,且,,橢圓的離心率為.故答案:.16、【解析】曲線的圖形是:以原點為圓心,以2為半徑的圓的左半圓,進而可求出結(jié)果.【詳解】解:由得,所以曲線()的圖形是:以原點為圓心,以2為半徑的圓的左半圓,∴曲線()的長度是,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關(guān)于a,b的方程組,解方程組代入得解.(2)(i)設(shè)直線AB方程,與橢圓方程聯(lián)立求出線段AB長,再求出原點O到直線AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問2詳解】(i)由(1)知,,設(shè)直線AB的斜率為,則直線AB的方程為:,由消去y并整理得:,點的橫坐標,則點的橫坐標有:,解得,則有,因矩形的邊CD過原點O,則,因此,矩形的面積,當且僅當,即時取“=”,所以矩形ABCD面積的最大值是.(ii)假定矩形ABCD能成為正方形,則,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成為正方形,此時,直線AB的方程為.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達定理構(gòu)建目標的函數(shù)關(guān)系式,自變量可以斜率或點的橫、縱坐標等.而目標函數(shù)的最值可以通過二次函數(shù)或基本不等式或?qū)?shù)等求得.18、(1)證明見解析(2)【解析】(1)取的中點,連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問1詳解】如圖,取的中點,連接,,因為,分別是,的中點.所以且又因為,,所以且,故四邊形為平行四邊形,所以.因為正三角形,是的中點,所以,又因為平面,所以,又,所以平面又,所以平面.【小問2詳解】如圖,過作截面平面,分別交,于,,連接,作于,因為平面平面,所以,結(jié)合直三棱柱的性質(zhì),則平面因為,,,所以.所以所求幾何體體積為19、(1);(2).【解析】(1)待定系數(shù)法求橢圓的方程;(2)設(shè)直線的方程為,,,用“設(shè)而不求法”表示出三角形OAB的面積.令轉(zhuǎn)化為關(guān)于t的函數(shù),利用函數(shù)求最值.【詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設(shè)直線的方程為,,由,得,則,點到直線的距離為,.令,則..∵在單調(diào)遞增,∴時.有最小值3.此時有最大值.∴面積的最大值為.20、(1)(2)【解析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.21、(1)(2)【解析】(1)由定義法求出曲線C的方程;(2)先判斷出直線AB過定點H(2,0)或H(4,0).當AB過定點H(4,0),求出最大;當H(2,0)時,可設(shè)直線AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問1詳解】因為線段PM的垂直平分線交半徑MQ于點C,所以,所以,符合橢圓的定義,所以點C的軌跡為以P、Q為焦點的橢圓,其中,所以,所以曲線C的方程為.【小問2詳解】不妨設(shè)直線l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年北京石景山初三上學(xué)期期末數(shù)學(xué)試題及參考答案
- 2022學(xué)年北京豐臺區(qū)初三上學(xué)期期末化學(xué)試題及參考答案
- 機器用動力傳動帶項目評價分析報告
- zigbee流水燈課程設(shè)計
- 啦啦隊用指揮棒市場環(huán)境與對策分析
- 農(nóng)副食品供貨服務(wù)方案
- 烘干晾衣架的課程設(shè)計
- 化工過程課程設(shè)計體會
- 雜志宣傳推廣方案
- 水肺潛水用腳蹼市場環(huán)境與對策分析
- 人教版五年級上冊數(shù)學(xué)解決問題進一法去尾法課件
- 江蘇省物價局關(guān)于公布《江蘇省定價目錄》的通知下載doc-
- 服裝企業(yè)組織架構(gòu)
- 五年級上冊 語文課件-12《 古詩三首 示兒》 (共29張PPT) 人教部編版
- LED燈具使用說明書參考模板范本
- 中國災(zāi)備行業(yè)發(fā)展技術(shù)白皮書
- 3、預(yù)制疊合板與鋁合金模板協(xié)同施工工法
- 醫(yī)療護理-血液病理醫(yī)療研究PPT模板
- 《北京市房屋重置成新價評估技術(shù)標準》(808號文)
- A股全部上市公司統(tǒng)計
- 飲食輔助器具的應(yīng)用
評論
0/150
提交評論