版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年山西省太原市高三第五次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.42.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.33.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.4.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.5.某設(shè)備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設(shè)備報廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年6.已知全集,函數(shù)的定義域為,集合,則下列結(jié)論正確的是A. B.C. D.7.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.28.若向量,,則與共線的向量可以是()A. B. C. D.9.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.11.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.12.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當(dāng)時,的最大值是()A.8 B.9 C.10 D.11二、填空題:本題共4小題,每小題5分,共20分。13.在中,角A,B,C的對邊分別為a,b,c,且,則________.14.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.15.設(shè)Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.16.已知,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大小;(Ⅱ)若的面積為,,求和的值.18.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當(dāng)時均有?若存在,求出所有的值;若不存在,請說明理由.19.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.20.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時,求證:.21.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.22.(10分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.2.D【解析】
在等差數(shù)列中,利用已知可求得通項公式,進而,借助函數(shù)的的單調(diào)性可知,當(dāng)時,取最大即可求得結(jié)果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點睛】本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.3.D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.4.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).5.D【解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.6.A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.7.C【解析】
由復(fù)數(shù)的除法運算整理已知求得復(fù)數(shù)z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復(fù)數(shù)的除法運算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.8.B【解析】
先利用向量坐標(biāo)運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標(biāo)運算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對應(yīng),縱坐標(biāo)與縱坐標(biāo)對應(yīng),切不可錯位.9.D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.10.A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時,得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時,函數(shù)取得最小值,當(dāng)時,;當(dāng)時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.11.C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計算并輸出變量的值,計算程序框圖的運行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.12.B【解析】
根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時,的最大值是9.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎(chǔ)題.14.【解析】
根據(jù)題意設(shè)為橢圓上任意一點,表達出,再根據(jù)二次函數(shù)的對稱軸與求解的關(guān)系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設(shè)為橢圓上任意一點,則.所以因為的對稱軸為.(i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.此時,解得.(ii)當(dāng)時,在上單調(diào)遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點睛】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點,再求出距離,根據(jù)二次函數(shù)的對稱軸與區(qū)間的關(guān)系分析最值的取值點分類討論求解.屬于中檔題.15.55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時,,當(dāng)時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點睛】本題考查求數(shù)列的前項和,屬于基礎(chǔ)題.16.【解析】
首先利用,將其兩邊同時平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導(dǎo)公式求得,得到結(jié)果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,倍角公式,誘導(dǎo)公式,屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大?。唬á颍┩ㄟ^面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運算能力.18.(1);(2).【解析】
(1)對求導(dǎo),對參數(shù)進行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉(zhuǎn)化不等式得,令,化簡得,因此,,最后根據(jù)導(dǎo)數(shù)研究對應(yīng)函數(shù)單調(diào)性,確定對應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時,對恒成立,與題意不符,當(dāng),,∴時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時,,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調(diào)遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19.(1)(2)答案不唯一,見解析【解析】
(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關(guān)系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當(dāng)時,的面積,當(dāng)時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.20.(1)見解析(2)見解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域為,,①當(dāng)時,由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時,由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時,,所以在上單調(diào)遞增;④當(dāng)時,由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時,,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因為,所以,所以.即,所以當(dāng)時,成立.【點睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.21.(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據(jù)余弦定理:,..【點睛】本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版辦公設(shè)備銷售與市場拓展及售后服務(wù)合同樣本2篇
- 布氏桿菌病影像診斷
- 2024版建筑用砂石料價格變動調(diào)整合同
- 2024年智能制造生產(chǎn)線建設(shè)招投標(biāo)合同
- 2024年度城市綠化建設(shè)施工合同2篇
- 2024年智能設(shè)備研發(fā)企業(yè)高管聘用及成果轉(zhuǎn)化合同3篇
- 2024年度香港公司設(shè)備租賃合同with租金調(diào)整條款3篇
- 2024年度承包合同:酒店管理與運營承包協(xié)議3篇
- 2024年度文藝巡演項目財務(wù)結(jié)算合同3篇
- 2024年期辦公樓裝修施工合作合同樣本版
- GB/T 29309-2012電工電子產(chǎn)品加速應(yīng)力試驗規(guī)程高加速壽命試驗導(dǎo)則
- GB 29216-2012食品安全國家標(biāo)準食品添加劑丙二醇
- 齊魯工業(yè)大學(xué)信息管理學(xué)成考復(fù)習(xí)資料
- 公務(wù)員面試-自我認知與職位匹配課件
- 中頻電治療儀操作培訓(xùn)課件
- 柔弱的人課文課件
- 動物寄生蟲病學(xué)課件
- 電梯曳引系統(tǒng)設(shè)計-畢業(yè)設(shè)計
- 三度房室傳導(dǎo)阻滯護理查房課件
- 講課比賽精品PPT-全概率公式貝葉斯公式-概率論與數(shù)理統(tǒng)計
- 藥理學(xué)39人工合成抗菌藥課件
評論
0/150
提交評論