版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁山西省陽泉市2024-2025學(xué)年數(shù)學(xué)九上開學(xué)學(xué)業(yè)水平測試試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)在下列以線段a、b、c的長為邊,能構(gòu)成直角三角形的是()A.a(chǎn)=3,b=4,c=6 B.a(chǎn)=5,b=6,c=7 C.a(chǎn)=6,b=8,c=9 D.a(chǎn)=7,b=24,c=252、(4分)在平面直角坐標(biāo)系中,若點Mm,n與點Q-2,3關(guān)于原點對稱,則點Pm+n,n在A.第一象限 B.第二象限 C.第三象限 D.第四象限3、(4分)矩形,菱形,正方形都具有的性質(zhì)是()A.對角線相等 B.對角線互相垂直C.對角線互相平分 D.對角線平分一組對角4、(4分)正方形具有而菱形不一定具有的性質(zhì)是()A.對角線相等 B.對角線互相垂直C.對角線互相平分 D.對角線平分一組對角5、(4分)如圖,正方形的邊長為,動點從點出發(fā),沿的路徑以每秒的速度運動(點不與點、點重合),設(shè)點運動時間為秒,四邊形的面積為,則下列圖像能大致反映與的函數(shù)關(guān)系是()A. B.C. D.6、(4分)如圖,在ABCD中,AC與BD相交于點O,則下列結(jié)論不一定成立的是()A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD7、(4分)已知,則()A. B. C. D.8、(4分)如圖,將含30°角的直角三角板ABC的直角頂點C放在直尺的一邊上,已知∠A=30°,∠1=40°,則∠2的度數(shù)為()A.55° B.60° C.65° D.70°二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)在Rt△ABC中,∠C=90°,△ABC的周長為,其中斜邊的長為2,則這個三角形的面積為_____________。10、(4分)如圖,已知函數(shù)y=x+2b和y=ax+3的圖象交于點P,則不等式x+2b>ax+3的解集為________
.11、(4分)已知,四邊形ABCD中,AB∥CD,AB=8,DC=4,點M、N分別為邊AB、DC的中點,點P從點D出發(fā),以每秒1個單位的速度從D→C方向運動,到達點C后停止運動,同時點Q從點B出發(fā),以每秒3個單位的速度從B→A方向運動,到達點A后立即原路返回,點P到達點C后點Q同時停止運動,設(shè)點P、Q運動的時問為t秒,當(dāng)以點M、N、P、Q為頂點的四邊形為平行四邊形時,t的值為________。12、(4分)外角和與內(nèi)角和相等的平面多邊形是_______________.13、(4分)已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=﹣3,x2=4,則m+n=_____.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,的對角線相交于點,直線EF過點O分別交BC,AD于點E、F,G、H分別為OB、OD的中點,求證:四邊形GEHF是平行四邊形.15、(8分)在平行四邊形ABCD中E是BC邊上一點,且AB=AE,AE,DC的延長線相交于點F.(1)若∠F=62°,求∠D的度數(shù);(2)若BE=3EC,且△EFC的面積為1,求平行四邊形ABCD的面積.16、(8分)為推動陽光體育活動的廣泛開展,引導(dǎo)學(xué)生積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運動鞋供學(xué)生借用.現(xiàn)從各年級隨機抽取了部分學(xué)生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,解答下列問題:(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為人,圖①中的m的值為,圖①中“38號”所在的扇形的圓心角度數(shù)為;(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是,中位數(shù)是;(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運動鞋,建議購買36號運動鞋多少雙?17、(10分)如圖,數(shù)學(xué)興趣小組要測量旗桿的高度,同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到地面并多出一段(如圖1),聰明的小紅發(fā)現(xiàn):先測出垂到地面的繩子長m,再將繩子拉直(如圖2),測出繩子末端C到旗桿底部B的距離n,利用所學(xué)知識就能求出旗桿的長,若m=2,n=6,求旗桿AB的長.18、(10分)如圖,在△ABC中,∠ACB=105°,AC邊上的垂直平分線交AB邊于點D,交AC邊于點E,連結(jié)CD.(1)若AB=10,BC=6,求△BCD的周長;(2)若AD=BC,試求∠A的度數(shù).B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)在一次數(shù)學(xué)活動課上,老師讓同學(xué)們借助一副三角板畫平行線AB,下面是小楠、小曼兩位同學(xué)的作法:老師說:“小楠、小曼的作法都正確”請回答:小楠的作圖依據(jù)是______;小曼的作圖依據(jù)是______.20、(4分)如圖,在△ABC中,D、E分別為AB、AC的中點,點F在DE上,且AF⊥CF,若AC=3,BC=5,則DF=_____.21、(4分)已知點A(﹣1,a),B(2,b)在函數(shù)y=﹣3x+4的圖象上,則a與b的大小關(guān)系是_____.22、(4分)平行四邊形ABCD的對角線AC、BD相交于點O,AB=6,BC=8,若△AOB是等腰三角形,則平行四邊形ABCD的面積等于_______________________.23、(4分)某市某活動中心組織了一次少年跳繩比賽,各年齡組的參賽人數(shù)如表所示:年齡組12歲13歲14歲15歲參賽人數(shù)5191313則全體參賽選手年齡的中位數(shù)是________.二、解答題(本大題共3個小題,共30分)24、(8分)(1)研究規(guī)律:先觀察幾個具體的式子:(2)尋找規(guī)律:(且為正整數(shù))(3)請完成計算:25、(10分)解方程:x2﹣4x+3=1.26、(12分)人教版八年級下冊第19章《一次函數(shù)》中“思考”:這兩個函數(shù)的圖象形狀都是直線,并且傾斜程度相同,函數(shù)y=-6x的圖象經(jīng)過原點,函數(shù)y=-6x+5的圖象經(jīng)與y軸交于點(0,5),即它可以看作直線y=-6x向上平移5個單位長度而得到。比較一次函數(shù)解析式y(tǒng)=kx+bk≠0與正比例函數(shù)解析式y(tǒng)=kxk≠0,容易得出:一次函數(shù)y=kx+bk≠0的圖象可由直線y=kx通過向上(或向下)平移b個單位得到(當(dāng)b>0(結(jié)論應(yīng)用)一次函數(shù)y=x-3的圖象可以看作正比例函數(shù)的圖象向平移個單位長度得到;(類比思考)如果將直線y=-6x的圖象向右平移5個單位長度,那么得到的直線的函數(shù)解析式是怎樣的呢?我們可以這樣思考:在直線y=-6x上任意取兩點A(0,0)和B(1,-6),將點A(0,0)和B(1,-6)向右平移5個單位得到點C(5,0)和D(6,-6),連接CD,則直線CD就是直線AB向右平移5個單位長度后得到的直線,設(shè)直線CD的解析式為:y=kx+bk≠0,將C(5,0)和D(6,-6)代入得到:5k+b=06k+b=-6解得k=-6b=30,所以直線CD的解析式為:y=-6x+30;①將直線y=-6x向左平移5個單位長度,則平移后得到的直線解析式為.②若先將直線y=-6x向左平移4個單位長度后,再向上平移5個單位長度,得到直線l,則直線l的解析式為(拓展應(yīng)用)已知直線l:y=2x+3與直線關(guān)于x軸對稱,求直線的解析式.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、D【解析】A選項:32+42≠62,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;
B選項:52+62≠72,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;
C選項:62+82≠92,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;
D選項:72+242=252,故符合勾股定理的逆定理,能組成直角三角形,故正確.
故選D.2、C【解析】
直接利用關(guān)于關(guān)于原點對稱點的性質(zhì)得出m,n的值,進而得出答案.【詳解】解:∵點M(m,n)與點Q(?2,3)關(guān)于原點對稱,∴m=2,n=?3,則點P(m+n,n)為(?1,?3),在第三象限.故選:C.此題主要考查了關(guān)于原點對稱的點的性質(zhì),正確得出m,n的值是解題關(guān)鍵.3、C【解析】
利用矩形、菱形和正方形的性質(zhì)對各選項進行判斷.【詳解】解:矩形、菱形、正方形都具有的性質(zhì)是對角線互相平分.故選:C.本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).4、A【解析】試題分析:根據(jù)正方形、菱形的性質(zhì)依次分析各選項即可判斷.正方形具有而菱形不一定具有的性質(zhì)是對角線相等故選A.考點:正方形、菱形的性質(zhì)點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握正方形、菱形的性質(zhì),即可完成.5、D【解析】
根據(jù)點P的路線,找到臨界點為D點,則分段討論P在邊AD、邊DC上運動時的y與x的函數(shù)關(guān)系式.【詳解】當(dāng)0≤x≤4時,點P在AD邊上運動,則y=(x+4)4=2x+8.當(dāng)4≤x≤8時,點P在DC邊上運動,則y═(8-x+4)4=-2x+24,根據(jù)函數(shù)關(guān)系式,可知D正確故選:D.本題為動點問題的函數(shù)圖象探究題,考查了一次函數(shù)圖象性質(zhì),應(yīng)用了數(shù)形結(jié)合思想.6、D【解析】試題分析:根據(jù)平行四邊形的性質(zhì)判斷即可:A、∵四邊形ABCD是平行四邊形,∴OB=OD(平行四邊形的對角線互相平分),正確,不符合題意;B、∵四邊形ABCD是平行四邊形,∴CD=AB(平行四邊形的對邊相等),正確,不符合題意;C、∵四邊形ABCD是平行四邊形,∴∠BAD=∠BCD(平行四邊形的對角相等),正確,不符合題意;D、根據(jù)四邊形ABCD是平行四邊形不能推出AC=BD,錯誤,符合題意.故選D.7、B【解析】
先利用二次式的乘法法則與二次根式的性質(zhì)求出m=2=,再利用夾值法即可求出m的范圍.【詳解】解:=2=,∵25<28<36,∴.故選:B.本題考查了二次根式的運算,二次根式的性質(zhì),估算無理數(shù)的大小,將m化簡為是解題的鍵.8、D【解析】
根據(jù)平行線的性質(zhì)求出∠3=∠1=40°,根據(jù)三角形的外角性質(zhì)求出∠2=∠3+∠A,代入求出即可.【詳解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故選D.本題考查了平行線的性質(zhì),三角形外角性質(zhì)的應(yīng)用,能求出∠3的度數(shù)是解答此題的關(guān)鍵,注意:兩直線平行,內(nèi)錯角相等.二、填空題(本大題共5個小題,每小題4分,共20分)9、0.5【解析】
首先根據(jù)三角形周長及斜邊長度求得兩直角邊的和,再根據(jù)勾股定理得出兩直角邊各自平方數(shù)的和的值,再利用完全平方公式得出兩直角邊的乘積的2倍的值即可求出三角形面積.【詳解】解:由題意可得AC+BC+AB=,∵∠C=90°,則AB為斜邊等于2,∴AC+BC=,再根據(jù)勾股定理得出,根據(jù)完全平方公式,將AC+BC=和代入公式得:,即=1,∴Rt△ABC面積=0.5=0.5.本題考查了勾股定理,解題的關(guān)鍵是利用完全平方公式求得兩直角邊的乘積的2倍的值.10、x>1【解析】解:由圖象可知:當(dāng)x>1時,.故答案為:x>1.11、1或1.5或3.5【解析】
利用線段中點的定義求出DN,BM的長,再根據(jù)兩點的運動速度及運動方向,分情況討論:當(dāng)0<t≤2時,PN=2-t,MQ=4-3t或MQ=3t-4;當(dāng)2<t≤4時PN=t-2,MQ=12-3t,然后根據(jù)平行四邊形的判定定理,由題意可知當(dāng)PN=MQ,以點M、N、P、Q為頂點的四邊形為平行四邊形,分別建立關(guān)于t的方程,分別求解即可【詳解】解:∵點M、N分別為邊AB、DC的中點,∴DN=12DC=12BM=12AB=12∵點P從點D出發(fā),以每秒1個單位的速度從D→C方向運動,到達點C后停止運動,同時點Q從點B出發(fā),以每秒3個單位的速度從B→A方向運動,點P到達點C后點Q同時停止運動,∴DP=t,BQ=3t,當(dāng)0<t≤2時,PN=2-t,MQ=4-3t或MQ=3t-4當(dāng)2<t≤4時PN=t-2,MQ=12-3t∵AB∥CD∴PN∥MQ;∴當(dāng)PN=MQ,以點M、N、P、Q為頂點的四邊形為平行四邊形,∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,解之:t=1或t=1.5或t=3.5.故答案為:t=1或1.5或3.5.本題考查平行四邊形的判定和性質(zhì),一元一次方程等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.12、四邊形【解析】
設(shè)此多邊形是n邊形,根據(jù)多邊形內(nèi)角與外角和定理建立方程求解.【詳解】設(shè)此多邊形是n邊形,由題意得:解得故答案為:四邊形.本題考查多邊形內(nèi)角和與外角和,熟記n邊形的內(nèi)角和公式,外角和都是360°是解題的關(guān)鍵.13、-1【解析】
根據(jù)根與系數(shù)的關(guān)系得出-3+4=-m,-3×4=n,求出即可.【詳解】解:∵關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=﹣3,x2=4,∴﹣3+4=﹣m,﹣3×4=n,解得:m=﹣1,n=﹣12,∴m+n=﹣1,故答案為:﹣1.本題考查了根與系數(shù)的關(guān)系的應(yīng)用,能根據(jù)根與系數(shù)的關(guān)系得出-3+4=-m,-3×4=n是解此題的關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、見解析.【解析】
通過證明△EOB≌△FOD得出EO=FO,結(jié)合G、H分別為OB、OD的中點,可利用對角線互相平分的四邊形是平行四邊形進行證明.【詳解】證明:∵四邊形ABCD為平行四邊形,∴BO=DO,AD=BC且AD∥BC.∴∠ADO=∠CBO.又∵∠EOB=∠FOD,∴△EOB≌△FOD(ASA).∴EO=FO.又∵G、H分別為OB、OD的中點,∴GO=HO.∴四邊形GEHF為平行四邊形.本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對應(yīng)著一種性質(zhì),在應(yīng)用時應(yīng)注意它們的區(qū)別與聯(lián)系.15、(1)(2)【解析】
(1)由四邊形ABCD是平行四邊形,∠F=62°,易求得∠BAE的度數(shù),又由AB=BE,即可求得∠B的度數(shù),然后由平形四邊形的對角相等,即可求得∠D的度數(shù);(2)根據(jù)相似三角形的性質(zhì)求出△FEC與△FAD的相似比,得到其面積比,再找到△FEC與平行四邊形的關(guān)系,求出平行四邊形的面積.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BAF=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°-∠BAE-∠AEB=56°,∵在平行四邊形ABCD中,∠D=∠B,∴∠D=56°.(2)∵DC∥AB,∴△CEF∽△BEA.∵BE=3EC∴,∵S△EFC=1.∴S△ABE=9a,∵∴∴∴∵∴此題考查了平行四邊形的性質(zhì)與相似三角形的判定和性質(zhì),熟練掌握平行四邊形的判定和性質(zhì)是解題的關(guān)鍵.16、(1)40,15,1°;(2)35,1;(3)50雙.【解析】
(1)根據(jù)條形統(tǒng)計圖求出總?cè)藬?shù)即可;由扇形統(tǒng)計圖以及單位1,求出m的值即可;用“38號”的百分比乘以10°,即可得圓心角的度數(shù);(2)找出出現(xiàn)次數(shù)最多的即為眾數(shù),將數(shù)據(jù)按照從小到大順序排列,求出中位數(shù)即可;(3)根據(jù)題意列出算式,計算即可得到結(jié)果.【詳解】(Ⅰ)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為6+12+10+8+4=40,圖①中m的值為100-30-25-20-10=15;10°×10%=1°;故答案為:40,15,1°.(2)∵在這組樣本數(shù)據(jù)中,35出現(xiàn)了12次,出現(xiàn)次數(shù)最多,∴這組樣本數(shù)據(jù)的眾數(shù)為35;∵將這組樣本數(shù)據(jù)從小到大得順序排列,其中處于中間的兩個數(shù)都為1,∴中位數(shù)為(1+1)÷2=1;故答案為:35,1.(3)∵在40名學(xué)生中,鞋號為1的學(xué)生人數(shù)比例為25%,∴由樣本數(shù)據(jù),估計學(xué)校各年級中學(xué)生鞋號為1的人數(shù)比例約為25%,則計劃購買200雙運動鞋,1號的雙數(shù)為:200×25%=50(雙).此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.17、旗桿的高度為1m.【解析】
設(shè)旗桿的高為x,在Rt△ABC中,由AC2=AB2+BC2,推出(x+m)2=n2+x2,可得x=,由此即可解決問題.【詳解】設(shè)旗桿的高為x.在Rt△ABC中,∵AC2=AB2+BC2,∴(x+m)2=n2+x2,∴x=,∵m=2,n=6,∴x=.答:旗桿AB的長為1.本題考查解直角三角形、勾股定理等知識,解題的關(guān)鍵是理解題意,學(xué)會構(gòu)建方程解決問題,屬于中考??碱}型.18、(1)16;(2)25°.【解析】
根據(jù)線段垂直平分線的性質(zhì),可得CD=AD,根據(jù)三角形的周長公式,可得答案;根據(jù)線段垂直平分線的性質(zhì),可得CD=AD,根據(jù)等腰三角形的性質(zhì),可得∠B與∠CDB的關(guān)系,根據(jù)三角形外角的性質(zhì),可得∠CDB與∠A的關(guān)系,根據(jù)三角形內(nèi)角和定理,可得答案.【詳解】解:(1)∵DE是AC的垂直平分線,∴AD=CD.∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵AB=10,BC=6,∴C△BCD=16;(2)∵AD=CD∴∠A=∠ACD,設(shè)∠A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD.∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的內(nèi)角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°∴∠A=25°.本題考查線段垂直平分線的性質(zhì).一、填空題(本大題共5個小題,每小題4分,共20分)19、同位角相等,兩直線平行或垂直于同一直線的兩條直線平行內(nèi)錯角相等,兩直線平行【解析】
由平行線的判定方法即可得到小楠、小曼的作圖依據(jù).【詳解】解:∵∠B=∠D=90°,∴AB//CD(同位角相等,兩直線平行);∵∠ABC=∠DCB=90°,∴AB//CD(內(nèi)錯角相等,兩直線平行),故答案為:同位角相等,兩直線平行(或垂直于同一直線的兩條直線平行);內(nèi)錯角相等,兩直線平行.本題考查了作圖-復(fù)雜作圖和平行線的判定方法,解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.20、1【解析】
根據(jù)三角形中位線定理求出DE,根據(jù)直角三角形的性質(zhì)求出EF,計算即可.【詳解】解:∵D、E分別為AB、AC的中點,∴DE=12BC=2.5∵AF⊥CF,E為AC的中點,∴EF=12AC=1.5∴DF=DE﹣EF=1,故答案為:1.本題考查的是三角形中位線定理、直角三角形的性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.21、a>b【解析】試題解析:∵點A(-1,a),B(2,b)在函數(shù)y=-3x+4的圖象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案為a>b.22、1或2【解析】
分三種情形分別討論求解即可解決問題;【詳解】情形1:如圖當(dāng)OA=OB時,∵四邊形ABCD是平行四邊形,∴AC=2OA,BD=2OB,∴AC=BD,∴四邊形ABCD是矩形,∴四邊形ABCD的面積=1.情形2:當(dāng)AB=AO=OC=6時,作AH⊥BC于H.設(shè)HC=x.∵AH2=AB2-BH2=AC2-CH2,∴62-(x-8)2=122-x2,∴x=,∴AH=,∴四邊形ABCD的面積=8×=2.情形3:當(dāng)AB=OB時,四邊形ABCD的面積與情形2相同.綜上所述,四邊形ABCD的面積為1或2.故答案為1或2.本題考查平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題.23、1【解析】
根據(jù)中位數(shù)的定義來求解即可,中位數(shù)是指將數(shù)據(jù)按大小順序排列起來,形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據(jù).【詳解】解:本次比賽一共有:5+19+13+13=50人,∴中位數(shù)是第25和第26人的年齡的平均數(shù),∵第25人和第26人的年齡均為1歲,∴全體參賽選手的年齡的中位數(shù)為1歲.故答案為1.中位數(shù)的定義是本題的考點,熟練掌握其概念是解題的關(guān)鍵.二、解答題(本大題共3個小題,共30分)24、(1);;;(2);(3).【解析】
(1)各式計算得到結(jié)果即可;(2)歸納總結(jié)得到一般性規(guī)律,寫出即可;(3)原式各項利用得出的規(guī)律變形,計算即可求出值.【詳解】解:(1);;;(2);(3)原式=.此題考查了二次根式的加減法,以及規(guī)律型:數(shù)字的變化類,熟練掌握運算法則是解本題的關(guān)鍵.25、x1=1,x2=2.【解析】試題分析:本題考查了一元二次方程的解法,用十字相乘法分解因式求解即可.解:x2﹣4x+2=1(x﹣1)(x﹣2)=1x﹣1=1,x﹣2=1x1=1,x2=2.26、【結(jié)論應(yīng)用】y=x,下,1;【類比思考】①y=-6x-10;②y=-6x-3;【拓展應(yīng)用】y=-2x-1.【解析】【結(jié)論應(yīng)用】根據(jù)題目材料中給出的結(jié)論即可求解;【類比思考】①在直線y=-6x上任意取兩點A(0,0)和B(1,-6),將點A和B向左平移5個單位得到點C、D,根據(jù)點的平移規(guī)律得到點C、D的坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省丹東市東港市2023-2024學(xué)年八年級上學(xué)期期中考試數(shù)學(xué)試卷(含答案)
- “城市天氣預(yù)報員”實踐活動 課件 2024-2025學(xué)年電子工業(yè)出版社(2022)初中信息技術(shù)第三冊
- 5年中考3年模擬試卷初中道德與法治八年級下冊01專項素養(yǎng)綜合全練(一)
- 淘寶的swot分析課程
- 五下語文八單元作文教學(xué)課件教學(xué)
- 西師版四年級音樂上音樂教案
- DB11-T 2057-2022 二氧化碳排放核算和報告要求 民用航空運輸業(yè)
- 咨詢公司辦公大樓改造合同
- 公路智能監(jiān)控居間合同
- 電力電纜配送保證書
- 2024年中級纖維檢驗員職業(yè)鑒定考試題庫(含答案)
- 初中英語教學(xué)實踐反思
- 水利水電工程單元工程施工質(zhì)量驗收評定表及填表說明
- 畢節(jié)事業(yè)單位筆試真題2024
- CJ/T 130-2001 再生樹脂復(fù)合材料水箅
- 住院患者跌倒、墜床、壓力性損傷的風(fēng)險評估及管理課件
- 七年級語文上冊 第一單元 單元測試卷(人教版 2024年秋)
- 撤資退股申請書2024年
- 光明乳業(yè)股份有限公司盈利能力分析
- 化工設(shè)備試題
- 金融調(diào)解中心可行性報告
評論
0/150
提交評論