版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海高中區(qū)域教師研修一體課程復數(shù)與邏輯考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是虛數(shù)單位,復數(shù)()A. B. C. D.2.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.3.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.4.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.5.設等差數(shù)列的前項和為,若,則()A.23 B.25 C.28 D.296.若時,,則的取值范圍為()A. B. C. D.7.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q9.若,則下列關系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.410.已知等差數(shù)列中,則()A.10 B.16 C.20 D.2411.已知雙曲線的左焦點為,直線經(jīng)過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.12.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足且目標函數(shù)的最大值為7,最小值為1,則___________.14.設、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________15.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.16.已知關于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中18.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.19.(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數(shù).該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.每臺設備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設備時應同時購買20件還是21件易耗品?20.(12分)已知函數(shù).(1)當時,求的單調區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導函數(shù),設,求的取值范圍,并求取到最小值時所對應的的值.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.22.(10分)設(1)證明:當時,;(2)當時,求整數(shù)的最大值.(參考數(shù)據(jù):,)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用復數(shù)的除法運算,化簡復數(shù),即可求解,得到答案.【詳解】由題意,復數(shù),故選D.【點睛】本題主要考查了復數(shù)的除法運算,其中解答中熟記復數(shù)的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.2、B【解析】
根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.3、D【解析】
先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.4、A【解析】
求出拋物線的焦點坐標,利用拋物線的定義,轉化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,
過點P作PM垂直于準線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質的簡單應用,直線的斜率公式、利用數(shù)形結合進行轉化是解決本題的關鍵.考查學生的計算能力,屬于中檔題.5、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點睛】考查等差數(shù)列的有關性質、運算求解能力和推理論證能力,是基礎題.6、D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.7、D【解析】
利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.8、C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C9、D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結合的思想,是一道中檔題.10、C【解析】
根據(jù)等差數(shù)列性質得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質,是數(shù)列的常考題型.11、A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.12、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎題.14、【解析】
由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進而求出?!驹斀狻坑芍裹c,所以直線:,代入得,即,設,,故由定義有,,所以。【點睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質、以及直線與橢圓位置關系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。15、【解析】
設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、??碱}型.16、【解析】
先換元,令,將原方程轉化為,利用參變分離法轉化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【詳解】因為關于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學生運用轉化與化歸思想的能力,方程有解問題轉化成兩函數(shù)的圖像有交點問題,是常見的轉化方式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,概率為;列聯(lián)表詳見解析,有的把握認為交通安全意識與性別有關;.【解析】
根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結論;用分層抽樣法求得抽取各分數(shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強安全意識不強合計男性女性合計所以有的把握認為交通安全意識與性別有關.由題意可知分數(shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點睛】本題考查獨立性檢驗應用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.18、(1)證明見解析;(2).【解析】
(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,,分別為,,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:(1)因為底面為正方形,所以又因為,,滿足,所以又,面,面,,所以面.又因為面,所以,面面.(2)由(1)知,,兩兩垂直,以為坐標原點,以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設面法向量為,則由得,令得,,即;同理,設面的法向量為,則由得,令得,,即,所以,設二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學生的運算求解能力,此類問題關鍵是準確寫出點的坐標,是一道中檔題.19、(1)(2)應該購買21件易耗品【解析】
(1)由統(tǒng)計表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設備一個月使用易耗品的件數(shù)為6和7的頻率均為;B型號的設備一個月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號的設備一個月使用易耗品的件數(shù)為7和8的頻率分別為;設該單位一個月中三臺設備使用易耗品的件數(shù)分別為,則,,,設該單位三臺設備一個月中使用易耗品的件數(shù)總數(shù)為X,則而,,故,即該單位一個月中三臺設備使用的易耗品總數(shù)超過21件的概率為.(2)以題意知,X所有可能的取值為;;;由(1)知,,若該單位在購買設備的同時購買了20件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;;若該單位在肋買設備的同時購買了21件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;,所以該單位在購買設備時應該購買21件易耗品【點睛】本題考查獨立事件的概率,考查離散型隨機變量的分布列和期望,考查數(shù)據(jù)處理能力.20、(1)單調遞增區(qū)間為,單調遞減區(qū)間為(2)的取值范圍是;對應的的值為.【解析】
(1)當時,求的導數(shù)可得函數(shù)的單調區(qū)間;(2)若函數(shù)有兩個極值點,,且,利用導函數(shù),可得的范圍,再表達,構造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當時,,所以:,時,,當時,,當,時,,則函數(shù)的單調增區(qū)間為:,單調遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數(shù)的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因為:時,,所以:在,上是單調遞減,在,上單調遞增,因為:,(1),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當取到最小值時所對應的的值為;【點睛】本題主要考查利用導數(shù)研究函數(shù)的極值和單調區(qū)間問題,考查利用導數(shù)求函數(shù)的最值,體現(xiàn)了轉化的思想方法,屬于難題.21、(1);(2)見解析【解析】
(1)等價于(Ⅰ)或(Ⅱ)或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 果品綜合檢測項目背景分析
- 低空經(jīng)濟公司人力資源管理方案
- 參觀學校心得體會(25篇)
- 2023年站長資格證專項測試題有答案
- 油氣技服天然氣儲運練習試題附答案
- 2017年寧夏中考英語試題及答案
- 語文統(tǒng)編版(2024)一年級上冊語文園地八 課件
- 高中英語語法練習全集-答案
- 中班音樂郊游課件
- 4.2.1 角 北師版七年級數(shù)學上冊課件
- 《治安管理處罰法》課件
- 運輸實施方案
- 數(shù)字化生活方式2024年數(shù)字化生活發(fā)展趨勢
- 新希望養(yǎng)豬手冊
- 2024年中國長江三峽集團有限公司招聘筆試參考題庫含答案解析
- 《正確認識胰島素》課件
- 第四章-聲畫關系
- 胎膜早破教學查房
- 消毒供應中心消毒隔離質量控制評價標準
- 消防應急預案表
- 【歷年真題】2023年4月06088管理思想史自考試卷(浙江)
評論
0/150
提交評論