青海省平安縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁(yè)
青海省平安縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁(yè)
青海省平安縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁(yè)
青海省平安縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁(yè)
青海省平安縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

青海省平安縣二中2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列中,前項(xiàng)和為,且點(diǎn)在直線上,則=A. B.C. D.2.把直線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng),使它與圓相切,則直線轉(zhuǎn)動(dòng)的最小正角度A. B.C. D.3.已知雙曲線右頂點(diǎn)為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A.2 B.C. D.4.橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則實(shí)數(shù)m的值為()A.2 B.4C. D.5.橢圓的長(zhǎng)軸長(zhǎng)為()A. B.C. D.6.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動(dòng)點(diǎn)P(x,y)滿,則動(dòng)點(diǎn)P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切7.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.8.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內(nèi),點(diǎn)E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當(dāng)x增大時(shí),θ先增大后減小 B.當(dāng)x增大時(shí),θ先減小后增大C.當(dāng)d增大時(shí),θ先增大后減小 D.當(dāng)d增大時(shí),θ先減小后增大9.已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),若的零點(diǎn)為,極值點(diǎn)為,則()A. B.0C.1 D.210.若數(shù)列滿足,,則該數(shù)列的前2021項(xiàng)的乘積是()A. B.C.2 D.111.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在等比數(shù)列中,,是方程的兩個(gè)實(shí)根,則()A.-1 B.1C.-3 D.3二、填空題:本題共4小題,每小題5分,共20分。13.方程()所表示的直線恒過(guò)定點(diǎn)________14.已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,且直線l與橢圓交于C,D兩點(diǎn),若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為_(kāi)__________.15.已知點(diǎn),為拋物線:上不同于原點(diǎn)的兩點(diǎn),且,則的面積的最小值為_(kāi)_________.16.拋物線的焦點(diǎn)坐標(biāo)為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)命題方程表示中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.18.(12分)某中學(xué)共有名學(xué)生,其中高一年級(jí)有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個(gè)年級(jí)中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時(shí)間(單位:小時(shí)),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級(jí)學(xué)生的人數(shù)及圖中的值;(2)估計(jì)樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計(jì)全校睡眠時(shí)間超過(guò)個(gè)小時(shí)的學(xué)生人數(shù).19.(12分)在平面直角坐標(biāo)系中,有一條長(zhǎng)度為3的線段,端點(diǎn),分別在軸、軸上運(yùn)動(dòng),為線段上一點(diǎn),且.(1)求點(diǎn)的軌跡的方程;(2)已知不過(guò)原點(diǎn)的直線與相交于,兩點(diǎn),且線段始終被直線平分.求的面積取最大時(shí)直線的方程.20.(12分)若存在實(shí)常數(shù)k和b,使得函數(shù)和對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.21.(12分)已知圓M經(jīng)過(guò)原點(diǎn)和點(diǎn),且它的圓心M在直線上.(1)求圓M的方程;(2)若點(diǎn)D為圓M上的動(dòng)點(diǎn),定點(diǎn),求線段CD的中點(diǎn)P的軌跡方程.22.(10分)在二項(xiàng)式的展開(kāi)式中,______.給出下列條件:①若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于46;②所有奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和為256.試在上面兩個(gè)條件中選擇一個(gè)補(bǔ)充在上面的橫線上,并解答下列問(wèn)題:(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)求展開(kāi)式的常數(shù)項(xiàng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】點(diǎn)在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項(xiàng)為,公差為,,數(shù)列的前項(xiàng)和,,故選C考點(diǎn):1、等差數(shù)列;2、數(shù)列求和2、B【解析】根據(jù)直線過(guò)原點(diǎn)且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計(jì)算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時(shí)轉(zhuǎn)動(dòng)最小∴最小正角為.故選B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題3、B【解析】,得出到漸近線的距離為,由此可得的關(guān)系,從而求得離心率【詳解】因?yàn)?,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡(jiǎn)得故選:B4、C【解析】由焦點(diǎn)坐標(biāo)得到,求解即可.【詳解】根據(jù)焦點(diǎn)坐標(biāo)可知,橢圓焦點(diǎn)在y軸上,所以有,解得故選:C.5、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長(zhǎng)軸長(zhǎng)為.故選:D.6、A【解析】首先求得點(diǎn)的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡(jiǎn)為:,動(dòng)點(diǎn)的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A7、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.8、C【解析】以F為坐標(biāo)原點(diǎn),F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為2,則P(2,x,0),A(2,0,2),設(shè)直線l與EF,EH交于點(diǎn)M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對(duì)于A,B選項(xiàng),令d=0,則,由函數(shù)的單調(diào)性可判斷;對(duì)于C,D,當(dāng)x=0時(shí),則,令,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可判斷.【詳解】解:由題意,以F為坐標(biāo)原點(diǎn),F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系如圖所示,設(shè)正方體的棱長(zhǎng)為2,則P(2,x,0),A(2,0,2),設(shè)直線l與EF,EH交于點(diǎn)M、N,則,所以,,設(shè)平面AMN的法向量為,則,即,令,則,設(shè)平面PMN的法向量為,則,即,令,則,,對(duì)于A,B選項(xiàng),令d=0,則,顯示函數(shù)在是為減函數(shù),即減小,則增大,故選項(xiàng)A,B錯(cuò)誤;對(duì)于C,D,對(duì)于給定的,如圖,過(guò)作,垂足為,過(guò)作,垂足為,過(guò)作,垂足為,當(dāng)在下方時(shí),,設(shè),則對(duì)于給定的,為定值,此時(shí)設(shè)二面角為,二面角為,則二面角為,且,故,而,故即,當(dāng)時(shí),為減函數(shù),故為增函數(shù),當(dāng)時(shí),為增函數(shù),故為減函數(shù),故先增后減,故D錯(cuò)誤.當(dāng)在上方時(shí),,則對(duì)于給定的,為定值,則有二面角為,且,因,故為增函數(shù),故為減函數(shù),綜上,對(duì)于給定的,隨的增大而減少,故選:C.9、C【解析】令可求得其零點(diǎn),即的值,再利用導(dǎo)數(shù)可求得其極值點(diǎn),即的值,從而可得答案【詳解】解:,當(dāng)時(shí),,即,解得;當(dāng)時(shí),恒成立,的零點(diǎn)為又當(dāng)時(shí),為增函數(shù),故在,上無(wú)極值點(diǎn);當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,時(shí),取到極小值,即的極值點(diǎn),故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點(diǎn),考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題10、C【解析】先由數(shù)列滿足,,計(jì)算出前5項(xiàng),可得,且,再利用周期性即可得到答案.【詳解】因?yàn)閿?shù)列滿足,,所以,同理可得,…所以數(shù)列每四項(xiàng)重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項(xiàng)的乘積是.故選:C.11、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計(jì)算說(shuō)明“若q則p”的真假即可判斷作答.【詳解】因?yàn)?,由得:,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A12、B【解析】由韋達(dá)定理可知,結(jié)合等比中項(xiàng)的性質(zhì)可求出.【詳解】解:在等比數(shù)列中,由題意知:,,所以,,所以且,即.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將方程化為,令得系數(shù)等于0,即可得到答案.【詳解】方程可化為,由,得,所以方程()所表示的直線恒過(guò)定點(diǎn).故答案為:.【點(diǎn)睛】本題考查了直線恒過(guò)定點(diǎn)問(wèn)題,屬于基礎(chǔ)題.14、##0.25【解析】求出點(diǎn)A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計(jì)算作答.【詳解】依題意,點(diǎn),直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:15、【解析】設(shè),,利用可得即可求得,利用兩點(diǎn)間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以的面積的最小值為,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵點(diǎn)是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.16、【解析】利用焦點(diǎn)坐標(biāo)為求解即可【詳解】因?yàn)?,所以,所以焦點(diǎn)的坐標(biāo)為,故答案:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】求出當(dāng)命題、分別為真命題時(shí)實(shí)數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對(duì)應(yīng)的實(shí)數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因?yàn)椤啊睘榧倜},“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時(shí).綜上所述,實(shí)數(shù)的范圍為.18、(1)樣本中高一年級(jí)學(xué)生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級(jí)學(xué)生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計(jì)算出全校睡眠時(shí)間超過(guò)個(gè)小時(shí)的學(xué)生人數(shù).【小問(wèn)1詳解】解:樣本中高一年級(jí)學(xué)生的人數(shù)為.,解得.【小問(wèn)2詳解】解:設(shè)中位數(shù)為,前兩個(gè)矩形的面積之和為,前三個(gè)矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問(wèn)3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時(shí)間超過(guò)個(gè)小時(shí)的學(xué)生人數(shù)約為.19、(1)(2)【解析】(1)設(shè),根據(jù)題意可得,,利用兩點(diǎn)之間的距離公式表示出,化簡(jiǎn)即可得出結(jié)果;(2)設(shè),,線段的中點(diǎn)為,利用兩點(diǎn)坐標(biāo)表示直線斜率的公式和點(diǎn)差法求出直線的斜率,設(shè)的方程為,聯(lián)立橢圓方程并消去y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理表示、進(jìn)而得出弦長(zhǎng),利用點(diǎn)到直線的距離公式求出原點(diǎn)到的距離,結(jié)合基本不等式計(jì)算即可.【小問(wèn)1詳解】設(shè),由為線段上一點(diǎn),且,得,,又,則,整理可得,所以軌跡的方程為;【小問(wèn)2詳解】設(shè),,線段的中點(diǎn)為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設(shè)直線的方程為,由可得,則解得且由韋達(dá)定理,得,∴∵原點(diǎn)到直線的距離為∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,即時(shí),三角形的面積最大,此時(shí)直線的方程為.20、(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對(duì)任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問(wèn)1詳解】,當(dāng)時(shí),在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問(wèn)2詳解】設(shè)和之間的隔離直線為y=kx+b則對(duì)任意恒成立,即對(duì)任意恒成立由對(duì)任意恒成立,得當(dāng)時(shí),則有符合題意;當(dāng)時(shí),則有對(duì)任意恒成立的對(duì)稱軸為又的對(duì)稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在解決問(wèn)題一時(shí),求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進(jìn)而得出在恒成立,得在上的單調(diào)性.21、(1).(2).【解析】(1)設(shè)圓M的方程為,由已知條件建立方程組,求解即可;(2)設(shè),,依題意得.代入圓M的方程可得點(diǎn)P的軌跡方程.【小問(wèn)1詳解】解:設(shè)圓M的方程為,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論