




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆新疆石河子市第一中學(xué)數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-132.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.3.已知全集,集合,,則()A. B. C. D.4.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.5.函數(shù)滿(mǎn)足對(duì)任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),,則的值為()A.0 B.2 C.4 D.16.如圖所示點(diǎn)是拋物線的焦點(diǎn),點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則的周長(zhǎng)的取值范圍是()A. B. C. D.7.已知,則()A.5 B. C.13 D.8.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.9.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③10.已知且,函數(shù),若,則()A.2 B. C. D.11.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.9812.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿(mǎn)足約束條件則的最大值為_(kāi)_______.14.已知是函數(shù)的極大值點(diǎn),則的取值范圍是____________.15.函數(shù)滿(mǎn)足,當(dāng)時(shí),,若函數(shù)在上有1515個(gè)零點(diǎn),則實(shí)數(shù)的范圍為_(kāi)__________.16.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為_(kāi)_________,的大小為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求的面積.18.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過(guò)作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.19.(12分)已知數(shù)列滿(mǎn)足:對(duì)任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項(xiàng)公式;(3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.20.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程;(2)在曲線上取一點(diǎn),直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線于點(diǎn),求的最大值.22.(10分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開(kāi)端.某種植戶(hù)對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.2、D【解析】
根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.3、B【解析】
直接利用集合的基本運(yùn)算求解即可.【詳解】解:全集,集合,,則,故選:.【點(diǎn)睛】本題考查集合的基本運(yùn)算,屬于基礎(chǔ)題.4、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.5、C【解析】
根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),所以的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)椋?因?yàn)?,故,所?故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿(mǎn)足,那么是周期為的周期函數(shù),本題屬于中檔題.6、B【解析】
根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點(diǎn),求得點(diǎn)橫坐標(biāo)的取值范圍,即可由的周長(zhǎng)求得其范圍.【詳解】拋物線,則焦點(diǎn),準(zhǔn)線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),解得交點(diǎn)橫坐標(biāo)為2.點(diǎn)、分別在兩個(gè)曲線上,總是平行于軸,因而兩點(diǎn)不能重合,不能在軸上,則由圓心和半徑可知,則的周長(zhǎng)為,所以,故選:B.【點(diǎn)睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.7、C【解析】
先化簡(jiǎn)復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算,是基礎(chǔ)題.8、B【解析】
由圓過(guò)原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫(xiě)出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過(guò)原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問(wèn)題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問(wèn)題可解,如果僅從方程組角度研究?jī)汕€交點(diǎn),恐怕難度會(huì)大大增加,甚至沒(méi)法求解.9、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過(guò)恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.10、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.11、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.12、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類(lèi),利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿(mǎn)足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
畫(huà)出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過(guò)點(diǎn)時(shí),有最大值,.故答案為:.【點(diǎn)睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.14、【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴在上單調(diào)遞增,時(shí),,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿(mǎn)足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得.15、【解析】
由已知,在上有3個(gè)根,分,,,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個(gè)根,而含505個(gè)周期,所以在上有3個(gè)根,設(shè),,易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時(shí),在上無(wú)根,在必有3個(gè)根,則,即,此時(shí);若時(shí),在上有1個(gè)根,注意到,此時(shí)在不可能有2個(gè)根,故不滿(mǎn)足;若時(shí),要使在有2個(gè)根,只需,解得;若時(shí),在上單調(diào)遞增,最多只有1個(gè)零點(diǎn),不滿(mǎn)足題意;綜上,實(shí)數(shù)的范圍為.故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,涉及到函數(shù)的周期性、分類(lèi)討論函數(shù)的零點(diǎn),是一道中檔題.16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標(biāo)方程即可.(2)將和的極坐標(biāo)方程聯(lián)立,求得兩個(gè)曲線交點(diǎn)的極坐標(biāo),即可由極坐標(biāo)的含義求得的面積.【詳解】(1)曲線的參數(shù)方程為(α為參數(shù)),消去參數(shù)的的直角坐標(biāo)方程為.所以的極坐標(biāo)方程為(2)解方程組,得到.所以,則或().當(dāng)()時(shí),,當(dāng)()時(shí),.所以和的交點(diǎn)極坐標(biāo)為:,.所以.故的面積為.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)的轉(zhuǎn)化,利用極坐標(biāo)求三角形面積,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡(jiǎn)函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡(jiǎn)和計(jì)算能力.19、(1)3;(2);(3)見(jiàn)解析.【解析】
(1)依據(jù)下標(biāo)的關(guān)系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項(xiàng)公式知,求出首項(xiàng)和公比即可。利用關(guān)系式,列出方程,可以解出首項(xiàng)和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因?yàn)閷?duì)任意,都有,所以,,兩式相加,,解得;(2)設(shè)等比數(shù)列的首項(xiàng)為,公比為,因?yàn)閷?duì)任意,都有,所以有,解得,又,即有,化簡(jiǎn)得,,即,或,因?yàn)?,化?jiǎn)得,所以故。(3)因?yàn)閷?duì)任意,都有,所以有,成等差數(shù)列,設(shè)公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列。【點(diǎn)睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應(yīng)用,意在考查學(xué)生的邏輯推理,數(shù)學(xué)建模,綜合運(yùn)用數(shù)列知識(shí)的能力。20、(1)見(jiàn)解析;(2).【解析】
(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過(guò)點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過(guò)點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 木材加工中的刀具磨損與維護(hù)考核試卷
- 動(dòng)物膠在紡織工業(yè)中的應(yīng)用考核試卷
- 床上用品企業(yè)產(chǎn)品生命周期管理考核試卷
- 塑料制品在汽車(chē)燃油系統(tǒng)的應(yīng)用考核試卷
- 婚慶布置道具考核試卷
- 放射性金屬礦選礦新技術(shù)與發(fā)展趨勢(shì)分析考核試卷
- 成人學(xué)生心理健康教育考核試卷
- 阿姐房屋租賃合同范本
- 沙石購(gòu)銷(xiāo)合同范本
- 蘇州房屋裝修合同范本
- 中級(jí)消防設(shè)施操作員證培訓(xùn)項(xiàng)目服務(wù)方案
- 自考15040習(xí)新時(shí)代思想概論高頻備考復(fù)習(xí)重點(diǎn)
- 精神障礙診療規(guī)范(2020-年版)-人格-現(xiàn)實(shí)解體障礙
- DB32T-工業(yè)有機(jī)廢氣治理用活性炭技術(shù)要求
- 污水處理及中水回用工程可行性研究報(bào)告書(shū)
- 醫(yī)學(xué)課件小兒腹瀉5
- 小學(xué)六年級(jí)語(yǔ)文下冊(cè)《北京的春天》課件
- 發(fā)展?jié)h語(yǔ) 初級(jí)讀寫(xiě)一 第二課 謝謝你
- 景觀照明設(shè)施運(yùn)行維護(hù)經(jīng)費(fèi)估算
- GB/T 12279.1-2024心血管植入器械人工心臟瓣膜第1部分:通用要求
- 人工智能在維修行業(yè)的應(yīng)用
評(píng)論
0/150
提交評(píng)論