廣西柳州鐵一中、南寧三中 2025屆高一數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
廣西柳州鐵一中、南寧三中 2025屆高一數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
廣西柳州鐵一中、南寧三中 2025屆高一數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
廣西柳州鐵一中、南寧三中 2025屆高一數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
廣西柳州鐵一中、南寧三中 2025屆高一數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西柳州鐵一中、南寧三中2025屆高一數(shù)學第一學期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)a為實數(shù),“”是“對任意的正數(shù)x,”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件2.直線經(jīng)過第一、二、四象限,則a、b、c應滿足()A. B.C. D.3.香農(nóng)定理是所有通信制式最基本的原理,它可以用香農(nóng)公式來表示,其中是信道支持的最大速度或者叫信道容量,是信道的帶寬(),S是平均信號功率(),是平均噪聲功率().已知平均信號功率為,平均噪聲功率為,在不改變平均信號功率和信道帶寬的前提下,要使信道容量增大到原來的2倍,則平均噪聲功率約降為()A. B.C. D.4.函數(shù)在區(qū)間上的最大值為2,則實數(shù)的值為A.1或 B.C. D.1或5.當時,在同一平面直角坐標系中,函數(shù)與的圖象可能為A. B.C. D.6.不等式的解集為R,則a的取值范圍為()A. B.C. D.7.已知函數(shù)為偶函數(shù),則A.2 B.C. D.8.冪函數(shù)的圖象過點,則()A. B.C. D.9.已知全集,則()A. B.C. D.10.若函數(shù)在區(qū)間上存在零點,則實數(shù)的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.第24屆冬季奧林匹克運動會(TheXXIVOlympicWinterGames),即2022年北京冬季奧運會,計劃于2022年2月4日星期五開幕,2月20日星期日閉幕.北京冬季奧運會設(shè)7個大項,15個分項,109個小項.某大學青年志愿者協(xié)會接到組委會志愿者服務邀請,計劃從大一至大三青年志愿者中選出24名志愿者,參與北京冬奧會高山滑雪比賽項目的服務工作.已知大一至大三的青年志愿者人數(shù)分別為50,40,30,則按分層抽樣的方法,在大一青年志愿者中應選派__________人.12.已知,若,則的最小值是___________.13.已知函數(shù),若關(guān)于方程恰好有6個不相等的實數(shù)解,則實數(shù)的取值范圍為__________.14.的值為_______15.經(jīng)過點,且在軸上的截距等于在軸上的截距的2倍的直線的方程是__________16.如圖,在四棱錐中,平面平面,是邊長為4的等邊三角形,四邊形是等腰梯形,,則四棱錐外接球的表面積是____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.給出以下定義:設(shè)m為給定的實常數(shù),若函數(shù)在其定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)為“函數(shù)”.(1)判斷函數(shù)是否為“函數(shù)”;(2)若函數(shù)為“函數(shù)”,求實數(shù)a的取值范圍;(3)已知為“函數(shù)”,設(shè).若對任意的,,當時,都有成立,求實數(shù)的最大值.18.袋子里有6個大小、質(zhì)地完全相同且?guī)в胁煌幪柕男∏?,其中?個紅球,2個白球,3個黑球,從中任取2個球.(1)寫出樣本空間;(2)求取出兩球顏色不同的概率;(3)求取出兩個球中至多一個黑球的概率.19.求值:(1);(2).20.素有“天府之國”美稱的四川省成都市,屬于亞熱帶季風性濕潤氣候.據(jù)成都市氣象局多年的統(tǒng)計資料顯示,成都市從1月份到12月份的平均溫(℃)與月份數(shù)(月)近似滿足函數(shù),從1月份到7月份的月平均氣溫的散點圖如下圖所示,且1月份和7月份的平均氣溫分別為成都全年的最低和最高的月平均氣溫.(1)求月平均氣溫(℃)與月份數(shù)(月)的函數(shù)解析式;(2)推算出成都全年月平均氣溫低于但又不低于的是哪些月份.21.已知角的頂點為坐標原點,始邊為軸的非負半軸,終邊經(jīng)過點,且.(1)求實數(shù)的值;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)題意利用基本不等式分別判斷充分性和必要性即可.【詳解】若,因為,則,當且僅當時等號成立,所以充分性成立;取,因為,則,當且僅當時等號成立,即時,對任意的正數(shù)x,,但,所以必要性不成立,綜上,“”是“對任意的正數(shù)x,”的充分非必要條件.故選:A.2、A【解析】根據(jù)直線經(jīng)過第一、二、四象限判斷出即可得到結(jié)論.【詳解】由題意可知直線的斜率存在,方程可變形為,∵直線經(jīng)過第一、二、四象限,∴,∴且故選:A.3、A【解析】利用題設(shè)條件,計算出原信道容量的表達式,再列出在B不變時用所求平均噪聲功率表示的信道容量的表達式,最后列式求解即得.【詳解】由題意可得,,則在信道容量未增大時,信道容量為,信道容量增大到原來2倍時,,則,即,解得,故選:A4、A【解析】化簡可得,再根據(jù)二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系,結(jié)合正弦函數(shù)的值域分情況討論即可【詳解】因,令,故,當時,在單調(diào)遞減所以,此時,符合要求;當時,在單調(diào)遞增,在單調(diào)遞減故,解得舍去當時,在單調(diào)遞增所以,解得,符合要求;綜上可知或故選:A.5、C【解析】當時,單調(diào)遞增,單調(diào)遞減故選6、D【解析】對分成,兩種情況進行分類討論,結(jié)合判別式,求得的取值范圍.【詳解】當時,不等式化為,解集為,符合題意.當時,一元二次不等式對應一元二次方程的判別式,解得.綜上所述,的取值范圍是.故選:D【點睛】本小題主要考查二次項系數(shù)含有參數(shù)的一元二次不等式恒成立問題的求解,考查分類討論的數(shù)學思想方法,屬于基礎(chǔ)題.7、A【解析】由偶函數(shù)的定義,求得的解析式,再由對數(shù)的恒等式,可得所求,得到答案【詳解】由題意,函數(shù)為偶函數(shù),可得時,,,則,,可得,故選A【點睛】本題主要考查了分段函數(shù)的運用,函數(shù)的奇偶性的運用,其中解答中熟練應用對數(shù)的運算性質(zhì),正確求解集合A,再根據(jù)集合的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解析】將點代入中,求解的值可得,再求即可.【詳解】因為冪函數(shù)的圖象過點,所以有:,即.所以,故,故選:C.9、C【解析】根據(jù)補集的定義計算可得;【詳解】解:因為,所以;故選:C10、C【解析】由函數(shù)的零點的判定定理可得f(﹣1)f(1)<0,解不等式求得實數(shù)a的取值范圍【詳解】由題,函數(shù)f(x)=ax+1單調(diào),又在區(qū)間(﹣1,1)上存在一個零點,則f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故選C【點睛】本題主要考查函數(shù)的零點的判定定理的應用,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】根據(jù)分層抽樣原理求出抽取的人數(shù)【詳解】解:根據(jù)分層抽樣原理知,,所以在大一青年志愿者中應選派10人故答案為:1012、16【解析】乘1后借助已知展開,然后由基本不等式可得.【詳解】因為,所以當且僅當,,即時,取“=”號,所以的最小值為16.故答案為:1613、【解析】作出函數(shù)的簡圖,換元,結(jié)合函數(shù)圖象可知原方程有6根可化為在區(qū)間上有兩個不等的實根,列出不等式組求解即可.【詳解】當,結(jié)合“雙勾”函數(shù)性質(zhì)可畫出函數(shù)的簡圖,如下圖,令,則由已知條件知,方程在區(qū)間上有兩個不等的實根,則,即實數(shù)的取值范圍為.故答案為:【點睛】本題主要考查了分段函數(shù)的圖象,二次方程根的分布,換元法,數(shù)形結(jié)合,屬于難題.14、【解析】直接按照誘導公式轉(zhuǎn)化計算即可【詳解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案為:【點睛】本題考查誘導公式的應用:求值.一般采用“大角化小角,負角化正角”的思路進行轉(zhuǎn)化15、或【解析】設(shè)所求直線方程為,將點代入上式可得或.考點:直線方程16、##【解析】先根據(jù)面面垂直,取△的外接圓圓心G,梯形的外接圓圓心F,分別過兩點作對應平面的垂線,找到交點為外接球球心,再通過邊長關(guān)系計算半徑,代入球的表面積公式即得結(jié)果.【詳解】如圖,取的中點,的中點,連,,在上取點,使得,由是邊長為4的等邊三角形,四邊形是等腰梯形,,可得,,即梯形的外接圓圓心為F,分別過點、作平面、平面的垂線,兩垂線相交于點,顯然點為四棱錐外接球的球心,由題可得,,,則四棱錐外接球的半徑,故四棱錐外接球的表面積為故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)是(2)(3)【解析】(1)根據(jù)定義判得時,滿足,進而判斷;(2)根據(jù)題意得,,進而整理得存在實數(shù)使得,再結(jié)合和討論求解即可;(3)由題知,故不妨設(shè),進而得,故構(gòu)造函數(shù),則函數(shù)在上單調(diào)遞增,在作出函數(shù)圖像,數(shù)形結(jié)合求解即可.【小問1詳解】解:的定義域為,假設(shè)函數(shù)是“函數(shù),則存在定義域內(nèi)的實數(shù)使得,所以,所以,所以,所以函數(shù)“函數(shù)【小問2詳解】解:函數(shù)有意義,則,定義域為因為函數(shù)為“函數(shù)”,所以存在實數(shù)使得成立,即存在實數(shù)使得,所以存在實數(shù)使得成立,即,所以當時,,滿足題意;當時,,即,解得且,所以實數(shù)a的取值范圍是【小問3詳解】解:由為“函數(shù)”得,即,所以,不妨設(shè),則由得,所以故令,則在上單調(diào)遞增,又,作出函數(shù)圖像如圖,所以實數(shù)的取值范圍為,即實數(shù)的最大值為18、(1)答案見解析;(2);(3).【解析】(1)將1個紅球記為個白球記為個黑球記為,進而列舉出所有可能性,進而得到樣本空間;(2)由題意,有1紅1白,1紅1黑,1白1黑,共三大類情況,由(1),列舉出所有可能性,進而求出概率;(3)由題意,有1紅1白,1紅1黑,1白1黑,2白,共四大類情況,由(1),列舉出所有可能性,進而求出概率【小問1詳解】將1個紅球記為個白球記為個黑球記為,則樣本空間,共15個樣本點.【小問2詳解】記A事件為“取出兩球顏色不同”,則兩球顏色可能是1紅1白,1紅1黑,1白1黑,則包含11個樣本點,所以.【小問3詳解】記事件為“取出兩個球至多有一個黑球”,則兩球顏色可能是1紅1白,1紅1黑,1白1黑,2白,則包含12個樣本點,所以.19、(1)112(2)3【解析】(1)依據(jù)冪的運算性質(zhì)即可解決;(2)依據(jù)對數(shù)的運算性質(zhì)及換底公式即可解決.【小問1詳解】【小問2詳解】20、(1).(2)3月、4月、9月、10月【解析】(1)利用五點法求出函數(shù)解析式;(2)解不等式可得結(jié)論【詳解】(1)由題意,,,,又,而,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論