2025屆福建省泉州市第十六中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2025屆福建省泉州市第十六中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2025屆福建省泉州市第十六中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2025屆福建省泉州市第十六中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2025屆福建省泉州市第十六中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆福建省泉州市第十六中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某口罩生產(chǎn)商為了檢驗產(chǎn)品質(zhì)量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3252.設(shè)是等差數(shù)列的前n項和,若,,則()A.26 B.-7C.-10 D.-133.已知p:,那么p的一個充分不必要條件是()A. B.C. D.4.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定5.已知雙曲線的對稱軸為坐標軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或6.在空間直角坐標系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球7.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.8.已知,為雙曲線的左,右頂點,點P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.9.在平面直角坐標系xOy中,雙曲線(,)的左、右焦點分別為,,點M是雙曲線右支上一點,,且,則雙曲線的離心率為()A. B.C. D.10.在長方體中,,,點分別在棱上,,,則()A. B.C. D.11.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.12.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項和Sn滿足,則實數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.在正項等比數(shù)列{an}中,若,與的等差中項為12,則等于_______.14.數(shù)列的前n項和滿足:,則________15.已知直線與直線垂直,則__________16.某足球俱樂部選拔青少年隊員,每人要進行3項測試.甲隊員每項測試通過的概率均為,且不同測試之間相互獨立,設(shè)他通過的測試項目數(shù)為X,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和18.(12分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點,使得和面所成角的余弦值為,并說明理由.19.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設(shè)縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程20.(12分)已知直線,,,其中與交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程21.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前項和.22.(10分)已知雙曲線()的一個焦點是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個不同的點,線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.2、C【解析】直接利用等差數(shù)列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.3、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.4、C【解析】令雙曲線右焦點為,由對稱性可知,,結(jié)合雙曲線的定義即可得出結(jié)果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.5、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎(chǔ)題.6、D【解析】方程表示空間中的點到坐標原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D7、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應用問題,屬于中檔題8、A【解析】根據(jù)給定條件求出點P的坐標,再代入雙曲線方程計算作答.【詳解】由雙曲線對稱性不妨令點P在第一象限,過P作軸于B,如圖,因為等腰三角形,且頂角為,則有,,有,于是得,即點,因此,,解得,所以雙曲線C的離心率為.故選:A9、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因為,,所以在中,邊上的中線等于的一半,所以.因為,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A10、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因為,所以,所以,因為,所以;故選:D11、D【解析】先求定義域,再求導數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.12、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項公式.再根據(jù)新定義的意義,代入解不等式即可求得實數(shù)的取值范圍.【詳解】因為所以當時,兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當時,所以,則由“差半遞增”數(shù)列的定義可知化簡可得解不等式可得即實數(shù)的取值范圍為故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、128【解析】先根據(jù)條件利用等比數(shù)列的通項公式列方程組求出首項和公差,進而可得.【詳解】設(shè)正項等比數(shù)列{an}的公比為,由已知,得,①,又,②,由①②得,故答案為:128.14、【解析】利用“當時,;當時,"即可得出.【詳解】當時,當時,,不適合上式,數(shù)列的通項公式.故答案為:.15、-3【解析】因為直線與直線垂直,所以考點:本題考查兩直線垂直的充要條件點評:若兩直線方程分別為,則他們垂直的充要條件是16、【解析】根據(jù)二項分布的方差公式即可求出【詳解】因為,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)60(2)①1024;②1【解析】(1)根據(jù)二項式定理求解(2)根據(jù)二項式定理與條件求解,二項式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為18、(1)證明見解析;(2)為的中點,理由見解析.【解析】(1)取的中點,連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,設(shè)點,利用空間向量法可得出關(guān)于實數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點,連接,如圖:因為三角形是等邊三角形,所以,又因為面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、,在上找一點,其中,,,,設(shè)面的一個法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點,符合題意.19、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設(shè)直線方程,與拋物線聯(lián)立,利用韋達定理,即可求解.【詳解】(1)由題設(shè)知,拋物線的準線方程為,由點到焦點的距離為,得,解得,所以拋物線的標準方程為(2)設(shè),,顯然直線的斜率存在,故設(shè)直線的方程為,聯(lián)立消去得,由得,即所以,又因為,,所以,所以,即,解得,滿足,所以直線的方程為20、(1);(2).【解析】(1)首先求、的交點坐標,根據(jù)的斜率,應用點斜式寫出過P且與平行的直線方程;(2)根據(jù)弦心距、弦長、半徑的關(guān)系求圓的半徑,結(jié)合P的坐標寫出圓的方程.【小問1詳解】聯(lián)立、得:,可得,故,又的斜率為,則過P且與平行的直線方程,∴所求直線方程為.【小問2詳解】由(1),P到的距離,∴以P為圓心,截所得弦長為8的圓的半徑,∴所求圓的方程為.21、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項公式,(2)由(1)可得,然后利用裂項相消法可求出【小問1詳解】因為等差數(shù)列的公差為2,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論