版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
DRAFT
PAGE
1
ELECTRICITYSTORAGEWHITEPAPER
ForRenewableTechnologiesWorkingGroupMeeting,September8,2008
DRAFT
SteveIsser,JD,PhD
VicePresidentandGeneralCounsel
GoodCompanyAssociates
816CongressAvenue,Suite1400
Austin,Texas78701
512-279-0766phone
\o"/"
www.GoodCompanyA
I. STORAGETECHNOLOGIES
Energystoragetechnologiesconvertelectricitytootherenergyforms,withacharacteristicturnaroundefficiencydrivenbythecomplexityofconversionandreconversionbetweenelectricityandthestoredenergyform:
90-95percentefficienttoconvertelectricitytokineticenergyandbackagainbyspeedinguporslowingdownaspinningflywheel.
~70-80%efficiencyforbatteries(electrochemicalenergystoragedevices)ifchargedanddischargedatmoderaterates.
~75%efficiencyforcompressedairstorage,asrapidcompressionheatsupagas,increasingitspressureandthusmakingfurthercompressiondifficult.
~30-50%efficiencyforhydrogenstorageofelectricityfromthecombinationofelectrolyserefficiencyandre-conversion
Therearefourkeycharacteristicsofenergystoragedevices:
EnergyDensity:Theamountofenergythatcanbesuppliedfromastoragetechnologyperunitweight(measuredinWatt-hoursperkg,Wh/kg).
EnergyRating:(expressedinkWhorMWh)isimportantindetermininghowlongadevicecansupplyenergy.
PowerCapability:(ExpressedinkWorMW)determineshowmuchenergycanbereleasedinasettime.A100kWhdeviceratedat20kWcansupply20kWofoutputfor5hours(20x5=100kWh).
DischargeTime:Theperiodoftimeoverwhichanenergystoragetechnologyreleasesitsstoredenergy.
CostsofStorageTechnologies
Dr.RobertB.Schainker,EPRI,EmergingTechnologiestoIncreasethePenetrationandAvailabilityofRenewables:EnergyStorage–ExecutiveSummary,July31,2008,p.8
.EnergyStorageCouncil-
Costsofenergystoragedevicesareusuallyquotedintermsofcost/kWhorcosts/kW.Theseareusuallyrelatedtotheapplicationthedevicewasdesignedtosatisfy.SomedeviceswillhaveahighcostperkWhbutrelativelylowercost/kWwhileotherswillbethereverse.Theeconomicsofastoragetechnologywilldependbothuponcostanditsoperatingcharacteristics,andthustheeligiblemarketsinwhichitcouldexpecttoparticipate.Theeconomicswillalsodependuponthecustomerandpurpose,forexample,marketarbitrageorancillaryservicesforanindependentgenerator,ortransmission/distributioninvestmentdeferralforatransmissionanddistributionserviceutility.
A. Battery,FlywheelandCapacitorTechnologies
1. Batteries
Thereareawiderangeofbatterytechnologies,somewhichhavebeenemployedforalmostacentury,suchaslead-acidbatteries,andsomeofwhicharestillindevelopandhaveyettobecommercialized.
a. LithiumIon
Lithiumionbatterytechnologyhasprogressedfromdevelopmentalandspecial-purposestatustoaglobalmass-marketproductinlessthan20years.Lithiumionbatteriesofferhigh-powerdensities,typically110–160Wh/kgandgenerallyacceptablecyclelife.Nano-compositeelectrodesystemsmayofferevenhigherenergydensities.Charge/dischargeefficienciesof90%(i.e.roundtripefficiencyfrominitialchargetocompletedischarge)arereportedforLithiumbatteries.Duringcharging,lithiumionsmoveout(de-intercalate)fromthelithiummetaloxidecathodeandintercalateintothegraphite-basedanode,withthereversehappeningduringthedischargereaction.Theconductingelectrolytetakesnopartinthereactionexceptforconductingthelithiumionsduringthechargeanddischargecycles.Lithiumionsystemsmustbemaintainedwithinwell-definedoperatinglimitstoavoidpermanentcelldamageorfailure.Thetechnologyalsolackstheabilitytoequalizetheamountofchargeinitscomponentcells.
Theapplicationofthetechnologytolarger-scalesystemsisrelativelylimitedtodate,althoughvariousdevelopmentsareinhandinrelationtotheautomotive,powerutility,submersibleandmarinesectors.ThemainhurdleassociatedwithmassenergystoragesystemsusingLibatteriesisthehighcost(above$600/kWh)duetospecialpackagingandinternaloverchargeprotectioncircuits.SeveralcompaniesareworkingtoreducethemanufacturingcostofLi-ionbatteriestocapturelargeenergymarkets,especiallytheautomotivemarket.
InAugust2007AESCorp.andAltairNanotechnologiesannouncedajointdevelopmentandequipmentpurchaseagreement.Thecompaniesfirstprojectwasamodularunitwhichcontainedtwo1MW,250kWhbatterystorageunits,consistingofalithiumionbatterystack,anAC-to-DCpowerconversionsystem,HVACunit,andacontrolsystem,mountedinaportabletractortrailersizecontainer.Thebatterystackswerecomposedofaseriesarrangementoflithiumioncellpackagesmountedinrackswithinatrailer.Powerconversionwasperformedbycommercially-availableinverterswithcontrolcoordinatedbyaprogrammablelogiccontroller(PLC).ThetwobatterystoragesystemprototypeswereinstalledanddemonstratedatasubstationownedandoperatedbyIndianapolisPower&Light(IPL).TheIPLtestsitewasselectedtobecapableofdispatching1-MWtoapowergridinresponsetoaregulationcommand.Eachofthestoragedeviceswasabletooperatecontinuouslybetween1-MWchargeto1-MWdischargewithpowerdispatchresponseoccurringwithinonesecond.Additionaltestingincludedsimulatedfrequencyregulation,whichinvolvedswitchingtheunitsfromchargetodischargeatupto1MWeveryfoursecondsforseveralhours.Batterystackefficiencymeasuredusingcycliccharge/dischargetests(at50%stateofcharge)variedfrom97%at250kWdispatchto91%at1MWdispatch.Efficiencydropsoffwiththepowerdispatchlevelduetointernallossesthatareproportionaltothecurrentsquared.FactoringintheDC-to-ACpowerconversionsystem,theaverageconversionefficiencymeasuredvariedbetween93%at250kWdispatchto86%at1MWdispatch.ThisdoesnotincludeHVACortrailerauxiliaryload.SummaryofKEMAValidationReport,TwoMegawattAdvancedLithium-ionBESSSuccessfullyDemonstratesPotentialforUtilityApplications,June27,2008.
AEShasinstalleda2MWAdvancedLi-ionbasedsystematitsAESHuntingtonBeachPowerPlantinCalifornia,whichwentonlineinNovember,2008.Theramprateis999MW/sec
withroundtripefficiencyof90%.Theunitcancompletelychargeordischargein15minutes.DaurenKalish,EnergyStorageRoleinSmartGrid,CPUCSmartGridRulemaking,June2009.
TheAESsystemhasbeenacceptedforregulationservicesinthePJMmarket.
b. SodiumSulfur(NaS)battery
NaSbatterytechnologyinvolveshighoperatingtemperatures,from290°to360°C.Thecellconstructionusesliquidsulfurasthepositiveelectrodeandliquidsodiumasthenegativeelectrode,separatedbyasolidelectrolyteofbeta-alumina.Theelectrolyteallowsonlythepositivesodiumionstopassthroughitandcombinewiththesulfurtoformsodiumpolysulfides.Itsoperatingtemperaturemustbemaintained,byroutineoperationorbyexternalheating.
NaSbatterieshavearelativelyhighenergydensity,withintherange150–240Wh/kg.NaSisdesignedforlongdischargecycles(8hours),buthasthecapacitytodischargeveryrapidlyandatmultiplesofratedpower.Thesebatterieshaveanestimatedlifetimeof15yearswithacyclelifeof2500andcharge/dischargeefficienciesupto90%.
Thebatterymoduleconsistsofcellsconnectedinseries/parallelorseriesarrayswithinathermallyinsulatedenclosure.Modulesarethenconfiguredinseriesand/orparalleltosupportmulti-megawattloads.Highlycorrosivematerialrequireprotectivemeasuressuchasasafetytubeincorporatedinthecelldesign,hermeticallysealedcells,double-layerstainlesssteel,vacuuminsulatedenclosurewithsandfillerpackingbetweencells.Atradeoffexistsbetweenpoweroutputandbatterylife.Operatingathigherpowerlevelsresultsinasignificantriseinoperatingtemperature,whichacceleratescellcorrosionandincreasecellresistancewhichshortensbatterylife.Expectedlifeis15yearsor2500fullcharge/dischargecycles,butcanbeasshortas500cyclesinlongduration(15minute)mode.BenjaminL.Norris,JeffNewmiller,GeorgiannePeek,NAS?BatteryDemonstrationatAmericanElectricPower,SandiaReport,SAND2006-6740,March2007.
ResearchanddevelopmentintoNaSbatterieshasbeenpioneeredinJapansince1983bytheTokyoElectricPowerCorporation(TEPCO)andNGKInsulators.NGKbroughttheNASbatterytomarketin2002,andinitiatedcommercialscaleNASmanufacturinginApril,2003.Todate,theinstalledcapacitybaseisover300MW,acrosssome200sites,principallyinJapan.An8MW,58MWhsysteminstalledataHitachiautomotiveplantinJapaniscurrentlytheworld’slargestbatteryintermsofstoragecapacity.
AEP’sfirstcommercialenergystoragesystemwasaNGKNASBatteryatCharleston,WV.Ithasacapacityof1.2MW,7.2MWh(6hourduration)andhasbeenoperationalsinceJune26,2006,ninemonthsaftercontractsweresigned.Theprimaryapplicationispeakshaving.Thebatteryhelpsshavetransformerpeakloads,andreducestransformertemperaturesbyseveraldegrees.Peakshavingimprovedthefeeder’sloadfactorfrom0.75to0.80,onaverage,andprovidedaPJMmarketenergyvalueof$5,500permonth.AliNourai,InstallationoftheFirstDistributedEnergyStorageSystem(DESS)atAmericanElectricPower(AEP),SandiaReport,SAND2007-3580,June2007.
Whilecostswillvarywithlocalsiteconditions,itistheunderstandingatAEPthatthenextNASbasedenergystorageprojectwillcostapproximately$2,500/kW,installed.AEPhasinstalledthree2MWbatteriesatsitesinOhio,WestVirginiaandIndiana,allwithdynamicislanding.AEPisalsoinstallinga4MWbatteryatPresido,Texas,attheendofatransmissionline,todeferatransmissionupgrade.AliNourai,UtilityDeploymentofEnergyStorage,Presentation,October2008.
c. FlowCellBatteries
Electrochemicalflowcellsystems,alsoknownasredoxflowcells,convertelectricalenergyintochemicalpotentialenergybymeansofareversibleelectrochemicalreactionbetweentwoliquidelectrolytesolutions.Thenameredoxflowbatteryisbasedontheredoxreactionbetweenthetwoelectrolytesinthesystem.Inaflowcellthetwoelectrolytesareseparatedbyasemi-permeablemembrane.Thismembranepermitsionflow,butpreventsmixingoftheliquids.Astheionsflowacrossthemembrane,anelectricalcurrentisinducedintheconductors.Flowcellsstoreenergyintheelectrolytesolutions,andthepowerandenergyratingsofredoxflowcellsareindependentvariables.Theirpowerratingisdeterminedbytheactiveareaofthecellstackassemblyandtheirstoragecapacitybytheelectrolytequantity.Overthepast20years,developmentanddemonstrationactivitieshavecenteredaroundfourprincipalelectro-chemistriesforflowbatteries:vanadium/vanadium(VanadiumRedoxBatteries,VRB),zincbromine(ZBB),polysulfidebromideandzinccerium.Installationstodatehaveprincipallyusedthevanadiumredoxandzincbromine.Severaldozenareinplace,mainlyinJapanandNorthAmerica.Amajoradvantageofthetechnologyistheabilityofthetechnologytoperformdischargecyclesindefinitelysotherearenosignificantwasteproductsassociatedwithoperation.Thesesystemshavequotedefficienciesvaryingfrom70%(ceriumzinc)to85%(VRB).Oneproblemwithflowbatteriesisthatmultiplepumpingcircuitsindicatethatregularmaintenanceactivitywillberequired.
AZBBdemonstrationprojectforPG&Eusedatransportable2MW/2MWHZBBbatteryenergystoragesystematasubstationtodemonstrateandassessvalueofT&Dupgradedeferral.PremiumPower,anewmanufacturer,claimsa30yearlifeforitsZinc-Flowtechnologyandtheabilitytowithstandanunlimitednumberofcycles,whetherfull-orpartial-dischargeevents.ItsTransFlow2000providesupto500kWofpowerand2.8MWhofenergystoragecapacityinasingleenclosurethatfitsontoa53'trailer.Thebatteryhasyettobedeployed,thoughCPSEnergyhaschosenitforapilotprojectandthecompanyisrumoredtohavearelationshipwithDukeEnergy.Untilactualoperatingdatabecomesavailable,thecompany’sclaimsshouldbetreatedwithhealthyskepticism,sincetheyfarexceedoperatingexperiencewithotherflowbatteries.
TheleadingproducerofvanadiumredoxflowbatteriesywasVRBPowerSystem,whichbecameinsolventandwasacquiredbytheChinesefirmPrudentEnergy,whothenformedaCanadiansubsidiarytomanagetheassets.Thevanadiumredoxsystemhasanadvantageoverthehybridsystemasthedischargetimeatfullpowercanbevaried.VRBscanbefullydischargedwithoutreducinglifeexpectancy.AVRBinSapporo,Japanhasundergonearound14,000dischargecycles.TheVRBsystemiscurrentlybeingdeployedatanumberofsitesaroundtheworld,includinga250kW,2MWhbatterybyPacifiCorpinUtahanda4MWunitinJapan.
d. Lead-Acid
Lead-Acidbatteriesareelectrochemicalcells,baseduponchemicalreactionsinvolvingleadandsulfuricacid.Lead-Acidisoneoftheoldestandmostdevelopedbatterytechnologies,usedinelectricalpowersystemsformorethanacentury.Theyprovideacost-competitiveandprovensolutiontoarangeofstoragerequirements.Leadacidbatteriesarelowcostcomparedtootherbatterytechnologies.Buttheyhavesomedisadvantagesincludingrelativelylimitedcyclelife,low-energydensityandalargefootprint.Thetypicalenergydensitiesarelowerthanotherbatteriesat25–45Wh/kg.Charge/dischargeefficienciesforlead-acidbatteriesare60–95%withself-dischargeratesof2to5%permonth.Thechemicalreactionwithinalead-acidrecombinationcellfavorsseveralhoursoflow-ratedischarge,ratherthanafewsecondsofhigh-rateduty.Dependinguponthedesignthatisusedandthequalityofthebattery,theusercanexpectbatterylifetorangefrom3yearstoaslongas9yearsat>80%capacity.Maximizingbatteryliferequireskeepingthebatteryroomtemperatureat20°C,asforevery10°above20°Cthedesignlifeofabatterywillbehalved.
e. Nickel
ThereareanumberofNickelbasedbatteriescurrentlyavailableorunderdevelopment,includingNickel-Cadmium(NiCd),Nickel-MetalHydride(Ni-MH),Nickel-Zinc(NiZn)andSodium-NickelChloride(NaNiCl2).NiCdandNi-MHarethemostdevelopedoftheNibatteries.ThesevariousNibatterytypescovertheenergydensityrange20–120Wh/kg.TheNiCdandNiMHbatteriescanreachuptoaround1500deepcycles.Ni-ZnandNa-NiCl2haveashorterlifetime.
NiCdbatterysystemsrankalongsidelead-acidbatteriesintermsoftheirmaturity.NiCdbatterieshavebeenproducedsincetheearly20thcenturyandformedthemajorityoftherechargeablebatterymarketinconsumerelectronicsbythe1990s.NiCdisarobustandprovenalternativetolead-acidbatteries,withhigherenergydensity,alongercyclelifeandlow-maintenancerequirements.Despitebeingusedwidelyinelectricvehicles,therearefewexamplesoftheirapplicationtoelectricitymarkets.GoldenValleyElectricAssociation(GVEA)inFairbanks,Alaskahasinstalledwhatisclaimedtobetheworld’smostpowerfulbattery.Thelarge-scaleNiCdBatteryEnergyStorageSystem(BESS)canprovide27MWofelectricityforaminimumof15minutestostabilizethelocalpowergridintheeventoflossofgeneration,andhasdelivered46MWfor5minutes.In2006theBESSrespondedto82events.TheBESSwasdesignedandbuiltbySaft,aninternationalbatterymanufacturer,andcomprises13,760SaftSBH920NiCdcellsarrangedinfourparallelstrings.TheNiCdbatteriesthemselvesareexpectedtocomplete100completeand500partialdischargesinthesystem’s20yeardesignlife.StevenEckroad,EPRI,GoldenValleyCooperativeProjectinAlaska-40MWNickel-CadmiumBattery,CaliforniaEnergyCommissionStaffWorkshop,February24,2005.
Concernsaboutcadmiumtoxicityandassociatedrecyclingissuesareabarriertogainingconsentforfuturelarge-scalestoragesystemsbaseduponNiCdtechnology.
TheNaNiCl2battery,otherwiseknownastheZEBRAbattery,isahigh-temperaturebatterysystem,developedandproveninvarioustractionandpropulsionapplications.Itscellconstructioncomprisessodiumandnickelchlorideelectrodes,separatedbyabeta-aluminaelectrolyte,whichisabletoconductsodiumionsbutnotelectrons.Itoffersanumberofadvantagesrelativetosodium–sulfursystems,includingbettersafetycharacteristics,highercellvoltageandtheabilitytowithstandlimitedoverchargeanddischarge.NiCdandNi-MHofferthelowestefficiency,dischargingaround70%oftheenergyusedduringcharging.Incomparison,NiZnbatteriesofferefficienciesof~80%andNaNiCl2batterieshaveanefficiencyofaround90%.BothNiCdandNi-MHbatteriesareexpensivetomanufacturerelativetootherbatterytechnologies.
2. Flywheels
Theflywheelactsasamechanicalbatteryandcomprisesashaftmountedmassrotatingin(orcarrying)amotor-generatorwinding–convertingelectricalenergyintokineticenergyasitaccelerates(chargeswhenspeedingup)andthen,whenadischargeofenergyisrequired,reversestheflowofenergyandslowsdownasitgivesupitsstoredenergyintheformofelectricalpower.
Ingeneral,flywheelscanbeclassifiedaslowspeedorhighspeed.Theformeroperateatrevolutionsperminute(rpm)measuredinthousands,whilethelatteroperateatrpmmeasuredinthetensofthousands.Increasingrpmsignificantlyincreasestheenergydensityofaflywheel,butahighermassflywheelcanstoremoreenergyperrpm.Operatingathigherrpmnecessitatesfundamentaldifferencesindesignapproach.Whilelow-speedflywheelsareusuallymadefromsteel,high-speedflywheelsaretypicallymadefromGFRE(graphitefiberreinforcedepoxy)andfiberglasscompositematerialsthatwillwithstandthehigherstresses.High-speedflywheelsuniversallyemploymagneticbearings(allowingtheflywheeltolevitate)andvacuumenclosurestoreduceoreliminatefrictionlossesfrombearingsandairdrag.Whilesomelow-speedflywheelsuseonlyconventionalmechanicalbearings,mostflywheelsuseacombinationofthetwobearingtypes.Vacuumsarealsoemployedinsomelow-speedflywheels.ThebenefitsofincreasedperformanceofferedbyGFREcompositesmustbebalancedagainstthefarlowerrawmaterialcostofhighqualitysteels.
DCflywheelenergystoragesystemsaregenerallymorereliablethanbatteries,soapplicabilityismostlyanissueofcost-effectiveness.Batterieswillusuallyhavealowerfirstcostthanflywheels,butsufferfromasignificantlyshorterequipmentlifeandhigherannualoperationandmaintenanceexpenses.Thus,flywheelswilllookespeciallyattractiveinoperatingenvironmentsthataredetrimentaltobatterylife,suchasfrequentcycling.
BeaconPowerCorphasdevelopeda100kWmodulebasedonhigherrotationalspeedsratherthanmasstoincreasetheenergystored.Apatented,co-mingledrimtechnology(PCRT)hasbeendevelopedtopreventcracksdevelopingduetocentrifugalforces,leadingtosafetyimprovements.BeaconPowerquotesalifetimeof20yearsforitsflywheels.Thetechnologyhastheabilitytodischargeoverperiodsupto30minutes.BeaconPowerCorpenvisagesarraysofthe100kWmodulesinsystemsofaround20MWcapacity,providingupanddownregulationequalto40MWofswing.
3. UltraCapacitors
Themostdirectwayofstoringelectricalenergyiswithacapacitor.Acapacitorconsistsoftwometalplatesseparatedbyanonconductinglayercalledadielectric.Whenoneplateischargedwithelectricityfromadirect-currentsource,theotherplatewillhaveinducedinitachargeoftheoppositesign.Tobuildstandardcapacitorsthatcanholdasignificantamountofenergyrequiresaverylargedielectric,makingtheuseoflargecapacitorsuneconomical.Theultracapacitors(alsoknownassupercapacitorsordouble-layercapacitors)solvesthisproblemthroughtheuseofahighsurfaceareamaterialsuchasactivatedcarbonastheconductorwithanaqueousornon-aqueouselectrolyte.Ultracapacitorscontainasignificantlyenlargedelectrodesurfaceareacomparedtoconventionalcapacitors,aswellasaliquidelectrolyteandapolymermembrane.Theenergystoragecapabilitiesofultracapacitorsaresubstantiallygreaterthanthatofconventionalcapacitors,byapproximatelytwoordersofmagnitude.
Ultracapacitorsarecapableofchargingsubstantiallyfasterthanconventionalbatteries,
beingrechargedalmostindefinitelycomparedtobatteriesthatonlyhavearelativelysmallnumberofrechargesbeforeneedingreplacement;andcanoperatedowntotemperaturesof-25°C.Energydensitiesof20-30Wh/kghasbeenreportedforultracapacitors,whilerecentresearchatMITsuggeststhatenergydensitiesofgreaterthan60Wh/kgandalifetimelongerthan300,000cyclesisachievable.Typicalefficienciesforultracapacitorsarehigh(85–98%),makingthemanattractivestoragetechnologyformanyapplications.Ultracapacitorshavebeenmarketedsincethe1980s,withthefirstapplicationinmilitaryprojects,startingtheenginesofheavyequipmentsuchasbattletanksandsubmarinesorreplacingbatteriesinmissiles.In2005,theultracapacitormarketwasbetweenUS$272millionand$400million,andisgrowing,especiallyintheautomotivesector.ChrisNaish,IanMcCubbin,OliverEdbergandMichaelHarfoot,OutlookofEnergyStorageTechnologies,forEuropeanParliament'scommitteeonIndustry,ResearchandEnergy(ITRE),February2008,p.11.
.
B. CompressedAirEnergyStorage(CAES)
ThefirstcommercialscaleCAESplantintheworldwasthe290MWplantinHuntorf,Germany,operatedbyNordwestDeutscheKraftwerke(NDK)since1978.TheHuntorfplant,withtwosaltcaverns,hasacapacityof290MWandrunsonadailycycleinwhichitchargestheairstoragefor8hoursandprovidesgenerationforupto4hours.Itisprimarilyusedtoprovideancillaryservices.TheAlabamaElectricCo-operativeinMcIntosh,Alabama,USAbuiltthesecondcommercialscaleCAESplant,withacapacityofabout110MWofpowergeneration.Theplantisconstructedinconnectionwitha100MWcoalplantandactsasaregulatingcapacitybetweenthecoalplant’scapacityandtheelectricitydemand.TheAlabamaplantwasbuiltbasedonacompetitivelyawardedfixedprice,turnkeycontract,costingabout$460perkW(1991dollars).Theplantwasbuiltinabout2.5years.TheonemajordesigndifferencebetweentheGermanandAlabamaCAESplantsistheAlabamaplanthadanexhaustgasheatexchangerinittoheattheairafteritcamefromstorage,whichreducedtheplant’sfueluseby25percent.
FirstgenerationCAESusedasimpledesignwiththecompressorandgeneratoronthesameshaft.Thesingle-shaftturbomachinerytrainwithmultiplecomponentshassomeoperationalandmaintenancecomplications.Toinitiatecompressionoperation,theturbinetypicallybringsthemachinerytraintospeed.Aftersynchronization,theturbineisdecoupledandshutoffandthecompressorsareleftoperating.Thismeansthattheturbinesarecalledupontoinitiatebothcompressionandgeneration.Newdesignswouldusemultiplecompressorsonaseparateshaft,providingmoreoperationalflexibility.Thenewdesignseliminateoperationswitchovertimebydecouplingthecompressionandturbo-expandertrains,permittingdirectswitchingbetweencompressionandexpansionoperation.Thischangemeanscompressorsizecanbeoptimizedindependentlyoftheturbo-expanderdesignandpermitsstandardproductioncompressorstobeusedinthesystemconfiguration.ItalsomeansthataCAESwouldbeanidealancillaryservicemachine,sinceitwouldprovideacontrollableloadincompressormodeandafaststartgenerator,bothabletooperateindependently.ElectricPowerResearchInstitute,CompressedAirEnergyStorageScopingStudyforCalifornia,fortheCaliforniaEnergyCommission,PIERFinalReport,November2008,p.5.
TherampratesforaCAESsystemarebetterthanforanequivalentgasturbineplant.
TheMcIntoshplantcanrampatapproximately18MWperminute,whichisabout60%greaterthanfortypicalgasturbines.Proposedplantshavebeendesignedtoreachfullpowerin14minutes(or7minutesforanemergencystart)—whichtranslatesto9.6to19MWperminuteper135MWmodule.SamirSuccarandRobertH.Williams,CompressedAirEnergyStorage:Theory,Resources,AndApplicationsForWindPower,PrincetonEnvironmentalInstitute,April8,2008,p.23.
CAESstorageisdependentontheavailabilityofsuitablesaltdomeformationsorrockcaverns.TexasdomalsaltintheEastTexasandGulfCoastbasinsisrelativelypureandhomogeneous,butthelateralextentofdomesislimited,however,andrestrictingtheareausefulforcaverndevelopment.BeddedsaltofthePermianBasinismuchlesspurethanTexasdomesalt.Thedistributionoflow-solubilityimpuritiesisoneofthelimitationsofengineeringsolution-minedcaverns.However,thesesaltbedsaretypicallycontinuousoverlargeareas,manyclosetoareasslatedforextensivewinddevelopment.
Abovegroundairstoragevesselsorairstoragepipelinesystemscanalsobeusedtostorecompressedair.SuchsystemsareattractivebecausetheyallowCAESplantstobesitedalmostanywhere,sincenoundergroundgeologicformationisneeded.Thismethodusesbanksofhighstrengthsteelpipinginverticalconfigurationstoachievethedesiredresult.Thestorageunitswouldbeplacedinanexcavation,resultinginafourtosixstorybuilding.Thisprovidesflexiblestoragequantitiesataconstantpressureandtemperaturewithouttheconventionalgeologicalconstraints.However,amini-CAESfacilityhasonlyafewhoursofenergystorage.Suchsystemsareestimatedtobemoreexpensivethanundergroundsalt-basedairstoragecaverns,atabout$2,500/kW.NYSERDA,Mini-CompressedAirEnergyStorageforTransmissionCongestionReliefandWindShapingApplications,July2008.
C. OtherTechnologies
1. Hydrogen
Theessentialelementsofahydrogen-basedenergystoragesy
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《危機(jī)與沖突》課件
- 2024年度建筑材料放射性檢測委托協(xié)議書3篇
- 2024年物聯(lián)網(wǎng)智能傳感器生產(chǎn)與銷售合同
- 2024年校園網(wǎng)絡(luò)安全責(zé)任協(xié)議2篇
- 2025年鹽城貨運(yùn)從業(yè)資格證在哪考
- 2025年德陽貨運(yùn)從業(yè)資格證考試一共多少題
- 非謂語動詞解題原則與技巧課件
- 2025年六盤水貨運(yùn)上崗資格證模擬考試
- 2024年度輕工企業(yè)節(jié)能減排承包合同3篇
- 2025年重慶貨運(yùn)從業(yè)資格證考試題技巧答案大全
- 裝修工程竣工驗收報告(7篇)
- 商務(wù)溝通-課件
- ommaya囊的護(hù)理教學(xué)課件
- 俄羅斯教育課件
- 國家開放大學(xué)《傳感器與測試技術(shù)》實驗參考答案
- 第二單元寫作《學(xué)寫傳記》課件-部編版語文八年級上冊
- 礦區(qū)關(guān)鍵任務(wù)作業(yè)指導(dǎo)書
- NY∕T 3349-2021 畜禽屠宰加工人員崗位技能要求
- 晉升副主任醫(yī)師職稱述職報告PPT
- 幼兒園小班科學(xué):《有趣的溶解》 課件
- 一體板施工工藝標(biāo)準(zhǔn)規(guī)范標(biāo)準(zhǔn)
評論
0/150
提交評論