北師大版九年級數(shù)學(xué)上冊教案_第1頁
北師大版九年級數(shù)學(xué)上冊教案_第2頁
北師大版九年級數(shù)學(xué)上冊教案_第3頁
北師大版九年級數(shù)學(xué)上冊教案_第4頁
北師大版九年級數(shù)學(xué)上冊教案_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實際問題。一起看看最新北師大版九年級數(shù)學(xué)上冊教案!歡迎查閱!最新北師大版九年級數(shù)學(xué)上冊教案1學(xué)習(xí)目標(biāo)1.了解圓周角的概念.2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.4.熟練掌握圓周角的定理及其推理的靈活運(yùn)用.設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實際問題學(xué)習(xí)過程一、溫故知新:(學(xué)生活動)同學(xué)們口答下面兩個問題.1.什么叫圓心角?2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?二、自主學(xué)習(xí):自學(xué)教材P90---P93,思考下列問題:1、什么叫圓周角?圓周角的兩個特征:。2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.(1)一個弧上所對的圓周角的個數(shù)有多少個?(2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?(3).同弧上的圓周角與圓心角有什么關(guān)系?3、默寫圓周角定理及推論并證明。4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?三、典型例題:例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關(guān)系?為什么?四、鞏固練習(xí):1、(教材P93練習(xí)1)解:2、(教材P93練習(xí)2)3、(教材P93練習(xí)3)證明:4、(教材P95習(xí)題24.1第9題)五、總結(jié)反思:達(dá)標(biāo)檢測1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().A.140°B.110°C.120°D.130°(1)(2)(3)2.如圖2,∠1、∠2、∠3、∠4的大小關(guān)系是()A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠23.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()A.100°B.110°C.120°D.130°4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數(shù)是________.5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.(4)(5)6.(中考題)如圖5,于,若,則7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.拓展創(chuàng)新1.如圖,已知AB=AC,∠APC=60°(1)求證:△ABC是等邊三角形.(2)若BC=4cm,求⊙O的面積.3、教材P95習(xí)題24.1第12、13題。布置作業(yè)教材P95習(xí)題24.1第10、11題最新北師大版九年級數(shù)學(xué)上冊教案2二次根式教材內(nèi)容1.本單元教學(xué)的主要內(nèi)容:二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.2.本單元在教材中的地位和作用:二次根式是在學(xué)完了八年級下冊第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ).教學(xué)目標(biāo)1.知識與技能(1)理解二次根式的概念.(2)理解(a≥0)是一個非負(fù)數(shù),()2=a(a≥0),=a(a≥0).(3)掌握?=(a≥0,b≥0),=?;=(a≥0,b>0),=(a≥0,b>0).(4)了解最簡二次根式的概念并靈活運(yùn)用它們對二次根式進(jìn)行加減.2.過程與方法(1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念.再對概念的內(nèi)涵進(jìn)行分析,得出幾個重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計算和化簡.(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運(yùn)用規(guī)定進(jìn)行計算.(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡.(4)通過分析前面的計算和化簡結(jié)果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進(jìn)行合并,達(dá)到對二次根式進(jìn)行計算和化簡的目的.3.情感、態(tài)度與價值觀通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.教學(xué)重點1.二次根式(a≥0)的內(nèi)涵.(a≥0)是一個非負(fù)數(shù);()2=a(a≥0);=a(a≥0)及其運(yùn)用.2.二次根式乘除法的規(guī)定及其運(yùn)用.3.最簡二次根式的概念.4.二次根式的加減運(yùn)算.教學(xué)難點1.對(a≥0)是一個非負(fù)數(shù)的理解;對等式()2=a(a≥0)及=a(a≥0)的理解及應(yīng)用.2.二次根式的乘法、除法的條件限制.3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.教學(xué)關(guān)鍵1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點,突破難點.2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.單元課時劃分本單元教學(xué)時間約需11課時,具體分配如下:21.1二次根式3課時21.2二次根式的乘法3課時21.3二次根式的加減3課時教學(xué)活動、習(xí)題課、小結(jié)2課時21.1二次根式第一課時教學(xué)內(nèi)容二次根式的概念及其運(yùn)用教學(xué)目標(biāo)理解二次根式的概念,并利用(a≥0)的意義解答具體題目.提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實際問題.教學(xué)重難點關(guān)鍵1.重點:形如(a≥0)的式子叫做二次根式的概念;2.難點與關(guān)鍵:利用“(a≥0)”解決具體問題.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們獨(dú)立完成下列三個問題:問題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點的坐標(biāo)是___________.問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.老師點評:問題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(biāo)(,).問題2:由勾股定理得AB=問題3:由方差的概念得S=.二、探索新知很明顯、、,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號.(學(xué)生活動)議一議:1.-1有算術(shù)平方根嗎?2.0的算術(shù)平方根是多少?3.當(dāng)a<0,有意義嗎?老師點評:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.當(dāng)x是多少時,在實數(shù)范圍內(nèi)有意義?分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-1≥0,才能有意義.解:由3x-1≥0,得:x≥當(dāng)x≥時,在實數(shù)范圍內(nèi)有意義.三、鞏固練習(xí)教材P練習(xí)1、2、3.四、應(yīng)用拓展例3.當(dāng)x是多少時,+在實數(shù)范圍內(nèi)有意義?分析:要使+在實數(shù)范圍內(nèi)有意義,必須同時滿足中的≥0和中的x+1≠0.解:依題意,得由①得:x≥-由②得:x≠-1當(dāng)x≥-且x≠-1時,+在實數(shù)范圍內(nèi)有意義.例4(1)已知y=++5,求的值.(答案:2)(2)若+=0,求a2004+b2004的值.(答案:)五、歸納小結(jié)(學(xué)生活動,老師點評)本節(jié)課要掌握:1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號.2.要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù).六、布置作業(yè)1.教材P8復(fù)習(xí)鞏固1、綜合應(yīng)用5.2.選用課時作業(yè)設(shè)計.3.課后作業(yè):《同步訓(xùn)練》第一課時作業(yè)設(shè)計一、選擇題1.下列式子中,是二次根式的是()A.-B.C.D.x2.下列式子中,不是二次根式的是()A.B.C.D.3.已知一個正方形的面積是5,那么它的邊長是()A.5B.C.D.以上皆不對二、填空題1.形如________的式子叫做二次根式.2.面積為a的正方形的邊長為________.3.負(fù)數(shù)________平方根.三、綜合提高題1.某工廠要制作一批體積為1m3的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計需要,底面應(yīng)做成正方形,試問底面邊長應(yīng)是多少?2.當(dāng)x是多少時,+x2在實數(shù)范圍內(nèi)有意義?3.若+有意義,則=_______.4.使式子有意義的未知數(shù)x有()個.A.0B.1C.2D.無數(shù)5.已知a、b為實數(shù),且+2=b+4,求a、b的值.第一課時作業(yè)設(shè)計答案:一、1.A2.D3.B二、1.(a≥0)2.3.沒有三、1.設(shè)底面邊長為x,則0.2x2=1,解答:x=.2.依題意得:,∴當(dāng)x>-且x≠0時,+x2在實數(shù)范圍內(nèi)沒有意義.3.4.B5.a=5,b=-4最新北師大版九年級數(shù)學(xué)上冊教案3配方法的基本形式理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.重點講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.難點將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.一、復(fù)習(xí)引入(學(xué)生活動)請同學(xué)們解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?二、探索新知列出下面問題的方程并回答:(1)列出的經(jīng)化簡為一般形式的方程與剛才解題的方程有什么不同呢?(2)能否直接用上面前三個方程的解法呢?問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.(2)不能.既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:x2+6x-16=0移項→x2+6x=16兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負(fù)值,所以場地的寬為2m,長為8m.像上面的解題方法,通過配成完全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論