版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省范亭中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④2.已知命題,,則是()A., B.,.C., D.,.3.某人用隨機(jī)模擬的方法估計(jì)無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點(diǎn)作軸的垂線與曲線相交于點(diǎn),過作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無理數(shù)的估計(jì)值是()A. B. C. D.4.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.5.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.6.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件7.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.8.復(fù)數(shù)的模為().A. B.1 C.2 D.9.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.下列不等式成立的是()A. B. C. D.11.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為()A. B. C. D.12.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為__________.15.各項(xiàng)均為正數(shù)的等比數(shù)列中,為其前項(xiàng)和,若,且,則公比的值為_____.16.在邊長為2的正三角形中,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對于任意的正數(shù)n,總有.18.(12分)過點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn).(1)寫出曲線C的一般方程;(2)求的最小值.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.20.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線交橢圓于兩點(diǎn),線段的中點(diǎn)在直線上,求證:線段的中垂線恒過定點(diǎn).21.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若,,證明:.22.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個極值點(diǎn),,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.2、B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.3、D【解析】
利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時(shí)也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.4、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.5、A【解析】
根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.6、B【解析】
求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計(jì)算能力,難度較易.7、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.8、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.9、D【解析】
將函數(shù)的零點(diǎn)個數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點(diǎn),故與在時(shí)的圖象必有兩個交點(diǎn),故只需與在時(shí)的圖象有兩個交點(diǎn),再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)個數(shù)的問題,曲線的切線問題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.10、D【解析】
根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個選項(xiàng)的正誤.【詳解】對于,,,錯誤;對于,在上單調(diào)遞減,,錯誤;對于,,,,錯誤;對于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.11、A【解析】
根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題.12、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點(diǎn)睛】本題考查了平面向量模的求法及簡單應(yīng)用,平面向量數(shù)量積的定義及運(yùn)算,屬于基礎(chǔ)題.14、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(15、【解析】
將已知由前n項(xiàng)和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項(xiàng)均為正數(shù),舍根得解.【詳解】因?yàn)榧从值缺葦?shù)列各項(xiàng)均為正數(shù),故故答案為:【點(diǎn)睛】本題考查在等比數(shù)列中由前n項(xiàng)和關(guān)系求公比,屬于基礎(chǔ)題.16、【解析】
建立直角坐標(biāo)系,依題意可求得,而,,,故可得,且,由此構(gòu)造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標(biāo)系,則,,,設(shè),,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設(shè),,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據(jù)公式得到,計(jì)算得到答案.(2),根據(jù)裂項(xiàng)求和法計(jì)算得到,得到證明.【詳解】(1)由已知得時(shí),,故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時(shí),,..(2)..【點(diǎn)睛】本題考查了數(shù)列通項(xiàng)公式和證明數(shù)列不等式,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.18、(1);(2).【解析】
(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應(yīng)的對數(shù)分別為,,則,當(dāng)時(shí),取得最小值為.【點(diǎn)睛】該題考查的是有關(guān)參數(shù)方程的問題,涉及到的知識點(diǎn)有參數(shù)方程向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應(yīng)用,屬于簡單題目.19、(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化簡得到直線的普通方程化為,,是以點(diǎn)為圓心,為半徑的圓,利用垂徑定理計(jì)算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點(diǎn)為圓心,為半徑的圓,設(shè)點(diǎn)到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因?yàn)椋?,所?【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點(diǎn)代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關(guān)于的一元二次方程,利用韋達(dá)定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點(diǎn)得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達(dá)定理可得,,設(shè)的中點(diǎn)為,得,即,,的中垂線方程為,即,故得中垂線恒過點(diǎn).【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系及橢圓中的定值問題;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關(guān)鍵;屬于中檔題.21、(1)(2)見證明【解析】
(1)利用零點(diǎn)分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時(shí),不等式可化為.當(dāng)時(shí),,,所以;當(dāng)時(shí),,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點(diǎn)睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點(diǎn)分段討論法.22、(1)見解析;(2)見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專用設(shè)備制造加工服務(wù)費(fèi)協(xié)議樣本版B版
- 11擰螺絲 說課稿-2023-2024學(xué)年科學(xué)二年級下冊蘇教版
- 揭秘文學(xué)之魅
- 6 觀察與比較 說課稿-2024-2025學(xué)年科學(xué)一年級上冊教科版
- 供應(yīng)鏈優(yōu)化管理與合作服務(wù)合同
- 二手房屋買賣補(bǔ)充協(xié)議范本
- 長期租賃車輛協(xié)議書
- 蔬菜配送合同模板
- 專屬工作任務(wù)承攬協(xié)議一
- 互聯(lián)網(wǎng)科技企業(yè)戰(zhàn)略合作框架協(xié)議
- 實(shí)驗(yàn)報(bào)告抑菌結(jié)果分析
- 華為財(cái)務(wù)分析報(bào)告
- 快速出具舊機(jī)動車評估報(bào)告
- 客戶服務(wù)活動方案
- 臨床檢驗(yàn)血液學(xué)配套試題及答案2-13及臨床路徑試題
- 人員保有培訓(xùn)課件
- 水上拋石安全專項(xiàng)施工方案
- 臺大歐麗娟《紅樓夢》公開課全部筆記
- 數(shù)據(jù)治理在物流行業(yè)的應(yīng)用
- 班組長薪酬體系設(shè)計(jì)方案
- 持續(xù)改進(jìn)管理程序
評論
0/150
提交評論