河南省名校大聯(lián)考2025屆數(shù)學高二上期末教學質量檢測試題含解析_第1頁
河南省名校大聯(lián)考2025屆數(shù)學高二上期末教學質量檢測試題含解析_第2頁
河南省名校大聯(lián)考2025屆數(shù)學高二上期末教學質量檢測試題含解析_第3頁
河南省名校大聯(lián)考2025屆數(shù)學高二上期末教學質量檢測試題含解析_第4頁
河南省名校大聯(lián)考2025屆數(shù)學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省名校大聯(lián)考2025屆數(shù)學高二上期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某高校甲、乙兩位同學大學四年選修課程的考試成績等級(選修課的成績等級分為1,2,3,4,5,共五個等級)的條形圖如圖所示,則甲成績等級的中位數(shù)與乙成績等級的眾數(shù)分別是()A.3,5 B.3,3C.3.5,5 D.3.5,42.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.3.已知數(shù)列{}滿足,且,若,則=()A.-8 B.-11C.8 D.114.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題5.我國古代數(shù)學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍6.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.987.為了更好地研究雙曲線,某校高二年級的一位數(shù)學老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關于該雙曲線的對稱中心對稱,且,則()A. B.C. D.8.設函數(shù)的圖象為C,則下面結論中正確的是()A.函數(shù)的最小正周期是B.圖象C關于點對稱C.函數(shù)在區(qū)間上是增函數(shù)D.圖象C可由函數(shù)的圖象向右平移個單位得到9.直線且的傾斜角為()A. B.C. D.10.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進行質檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.811.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.3712.如圖是函數(shù)的導函數(shù)的圖象,下列結論中正確的是()A.在上是增函數(shù) B.當時,取得最小值C.當時,取得極大值 D.在上是增函數(shù),在上是減函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.點到直線的距離為_______.14.已知、分別為雙曲線的左、右焦點,為雙曲線右支上一點,滿足,直線與圓有公共點,則雙曲線的離心率的取值范圍是___________.15.正方體,點分別是的中點,則異面直線與所成角的余弦值為___________.16.已知函數(shù),則滿足實數(shù)的取值范圍是__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大??;(3)在側棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由18.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標準方程;(2)過點作直線交圓于且,求直線的方程.19.(12分)如圖,四棱錐P-ABCD的底面是矩形,底面ABCD,,M為BC中點,且.(1)求BC;(2)求二面角A-PM-B的正弦值.20.(12分)已知數(shù)列中,,().(1)求證:是等比數(shù)列,并求的通項公式;(2)數(shù)列滿足,求數(shù)列的前項和為.21.(12分)已知圓C的圓心在坐標原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;22.(10分)已知雙曲線的兩個焦點為的曲線C上.(1)求雙曲線C的方程;(2)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】將甲的所有選修課等級從低到高排列可得甲的中位數(shù),由圖可知乙的選修課等級的眾數(shù).【詳解】由條形圖可得,甲同學共有10門選修課,將這10門選修課的成績等級從低到高排序后,第5,6門的成績等級分別為3,4,故中位數(shù)為,乙成績等級的眾數(shù)為5.故選:C.2、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.3、C【解析】利用遞推關系,結合取值,求得即可.【詳解】因為,且,,故可得,解得(舍),;同理求得,,.故選:C.4、D【解析】因為是真命題,是假命題,所以是假命題,選項A錯誤,是真命題,選項B錯誤,是假命題,選項C錯誤,是真命題,選項D正確,故選D.考點:真值表的應用.5、C【解析】由題設易知是公比為2的等比數(shù)列,應用等比數(shù)列前n項和公式求,結合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.6、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設,飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D7、D【解析】依題意以雙曲線的對稱中心為坐標原點建系,設雙曲線的方程為,根據(jù)已知求得,點縱坐標代入計算即可求得橫坐標得出結果.【詳解】以雙曲線的對稱中心為坐標原點,建立平面直角坐標系,因為雙曲線的離心率為2,所以可設雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標為18.由,得,故.故選:D.8、B【解析】化簡函數(shù)解析式,求解最小正周期,判斷選項A,利用整體法求解函數(shù)的對稱中心和單調遞增區(qū)間,判斷選項BC,再由圖象變換法則判斷選項D.【詳解】,所以函數(shù)的最小正周期為,A錯;令,得,所以函數(shù)圖象關于點對稱,B正確;由,得,所以函數(shù)在上為增函數(shù),在上為減函數(shù),C錯;函數(shù)的圖象向右平移個單位得,D錯.故選:B9、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關系可得結果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.10、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因為含有編號66的商品被抽到,故其他能被抽到的是,當時,,其他三個選項均不合要求,故選:A11、C【解析】直接按照等差數(shù)列項數(shù)性質求解即可.【詳解】數(shù)列的前6項之和為.故選:C.12、D【解析】根據(jù)導函數(shù)的圖象判斷出函數(shù)的單調區(qū)間、極值、最值,由此確定正確選項.【詳解】根據(jù)圖象知:當,時,函數(shù)單調遞減;當,時,函數(shù)單調遞增.所以在上單調遞減,在上單調遞增,在上單調遞減,在上單調遞增,故選項A不正確,選項D正確;故當時,取得極小值,選項C不正確;當時,不是取得最小值,選項B不正確;故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】應用點線距離公式求點線距離.【詳解】由題設,點到距離為.故答案為:14、【解析】過點作于,過點作于,利用雙曲線的定義以及勾股定理可求得,由已知可得,可得出關于、的齊次不等式,結合可求得的取值范圍.【詳解】過點作于,過點作于,因為,所以,又因為,所以,故,又因為,且,所以,因此,所以,又因為直線與圓有公共點,所以,故,即,則,所以,又因為雙曲線的離心率,所以.故答案為:.15、【解析】以為坐標原點建立空間直角坐標系,根據(jù)異面直線所成角的向量求法可求得結果.【詳解】以為坐標原點,為軸可建立如圖所示空間直角坐標系,設正方體棱長為,則,,,,,,,即異面直線與所成角的余弦值為.故答案為:.16、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1的討論,當,解得當,不存在,當時,,解得,故x的范圍為點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,用空間向量求解二面角;(3)設出F點坐標,用空間向量的點到平面距離公式進行求解.【小問1詳解】證明:連接BD,設BD與AC交于點O,連接PO.因為,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因為平面PBD,所以【小問2詳解】因為,所以,所以由(1)知平面ABCD,以O為原點,,,的方向為x軸,y軸,z軸正方向,建立空間直角坐標系,則,,,,,,所以,,,設平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點F到平面AEC的距離為,理由如下:由(2)得,,設,則,所以點F到平面AEC的距離,解得,,所以18、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標即為圓心坐標,再求得半徑后可得圓的標準方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標準方程(2)由可得圓心到直線的距離當直線斜率不存在時,其方程為,當直線斜率存在時,設其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標準方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形19、(1);(2).【解析】(1)根據(jù)給定條件推導證得,再借助直角三角形中銳角的正切列式求解作答.(2)由給定條件建立空間直角坐標系,借助空間向量求解面面角作答【小問1詳解】連結BD,如圖,因底面ABCD,且平面ABCD,則,又,,平面PBD,于是得平面PBD,又平面PBD,則,有,又,則有,有,則,解得,所以.【小問2詳解】依題意,DA,DC,DP兩兩垂直,以點D為坐標原點建立如圖所示的空間直角坐標系,由(1)知,,,,,,,,設平面AMP的法向量為,則,令,得,設平面BMP的法向量為,則,令,得,設二面角A-PM-B的平面角為,則,因此,,所以二面角A-PM-B的正弦值為.20、(1)(2)【解析】由已知式子變形可得是以為首項,為公比的等比數(shù)列,由等比數(shù)列的通項公式易得利用錯位相減法,得到數(shù)列的前項和為解析:(1)由,()知,又,∴是以為首項,為公比的等比數(shù)列,∴,∴(2),,兩式相減得,∴點睛:本題主要考查數(shù)列的證明,錯位相減法等基礎知識,考查學生的分析問題解決問題的能力,轉化能力和計算能力.第一問中將已知的遞推公式進行變形,轉化為的形式來證明,還可以根據(jù)等比數(shù)列的定義來證明;第二問,將第一問中得到的結論代入,先得到的表達式,利用錯位相減法,即可得到數(shù)列的前項和為21、(1)(2)【解析】(1)由圓C的圓心在坐標原點,且過點,求得圓的半徑,利用圓的標準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標原點,且過點,所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點睛】本題主要考查了圓標準方程的求解,以及直線與圓的位置關系的應用,其中解答中熟練應用直線與圓的位置關系合理轉化是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.22、(1)雙曲線方程為(2)滿足條件的直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論