版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省金華市義烏市高一上數(shù)學期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的零點所在的區(qū)間是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)2.已知冪函數(shù)的圖象過點(2,),則的值為()A. B.C. D.3.設且則A. B.C. D.4.若函數(shù)是定義域為的奇函數(shù),且當時,,則當時,()A. B.C. D.5.已知角x的終邊上一點的坐標為(sin,cos),則角x的最小正值為()A. B.C. D.6.將函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象.A.π6 B.C.2π3 D.7.當時,在同一平面直角坐標系中,與的圖象是()A. B.C. D.8.函數(shù)f(x)=lnx﹣1的零點所在的區(qū)間是A(1,2) B.(2,3)C.(3,4) D.(4,5)9.已知集合,,若,則的值為A.4 B.7C.9 D.1010.明朝數(shù)學家程大位在他的著作《算法統(tǒng)宗》中寫了一首計算秋千繩索長度的詞《西江月》:“平地秋千未起,踏板一尺離地,送行兩步恰竿齊,五尺板高離地……”某教師根據(jù)這首詞設計一題:如圖,已知,,則弧的長()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是定義在上奇函數(shù),且函數(shù)為偶函數(shù),當時,,則______12.如圖,在中,,,若,則_____.13.已知函數(shù)(為常數(shù))是奇函數(shù).(1)求的值與函數(shù)的定義域.(2)若當時,恒成立.求實數(shù)的取值范圍.14.我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝著)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是__________.83415967215.函數(shù)(且)的圖象必經(jīng)過點___________.16.已知函數(shù),則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù).(1)計算;(2)求函數(shù)的零點;(3)根據(jù)第(1)問計算結果,寫出的兩條有關奇偶性和單調性的正確性質,并證明其中一個.18.如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB//CD,,若(1)求證:(2)求三棱錐的體積.19.已知直線(1)求與垂直,且與兩坐標軸圍成的三角形面積為4直線方程:(2)已知圓心為,且與直線相切求圓的方程;20.已知圓,直線過點.(1)若直線與圓相切,求直線的方程;(2)若直線與圓交于兩點,當?shù)拿娣e最大時,求直線的方程.21.求值:(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】先求得函數(shù)的單調性,利用函數(shù)零點存在性定理,即可得解.【詳解】解:因為函數(shù)均為上的單調遞減函數(shù),所以函數(shù)在上單調遞減,因為,,所以函數(shù)的零點所在的區(qū)間是.故選:B2、A【解析】令冪函數(shù)且過(2,),即有,進而可求的值【詳解】令,由圖象過(2,)∴,可得故∴故選:A【點睛】本題考查了冪函數(shù),由冪函數(shù)的形式及其所過的定點求解析式,進而求出對應函數(shù)值,屬于簡單題3、C【解析】由已知得,,去分母得,,所以,又因為,,所以,即,選考點:同角間的三角函數(shù)關系,兩角和與差的正弦公式4、D【解析】設,由奇函數(shù)的定義可得出,即可得解.【詳解】當時,,由奇函數(shù)的定義可得.故選:D.5、B【解析】先根據(jù)角終邊上點的坐標判斷出角的終邊所在象限,然后根據(jù)三角函數(shù)的定義即可求出角的最小正值【詳解】因為,,所以角的終邊在第四象限,根據(jù)三角函數(shù)的定義,可知,故角的最小正值為故選:B【點睛】本題主要考查利用角的終邊上一點求角,意在考查學生對三角函數(shù)定義的理解以及終邊相同的角的表示,屬于基礎題6、C【解析】根據(jù)正弦型函數(shù)圖象變換的性質,結合零點的定義和正弦型函數(shù)的性質進行求解即可.【詳解】因為函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象,所以函數(shù)因為x=0是函數(shù)Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)當φ=2kπ(k∈Z)時,因為φ>0,所以φ的最小值是2π,當φ=2kπ+2π3(k∈Z)時,因為φ>0,所以φ綜上所述φ的最小值是2π3故選:C7、B【解析】由定義域和,使用排除法可得.【詳解】的定義域為,故AD錯誤;BC中,又因為,所以,故C錯誤,B正確.故選:B8、B【解析】∵,在遞增,而,∴函數(shù)的零點所在的區(qū)間是,故選B.9、A【解析】可知,或,所以.故選A考點:交集的應用10、C【解析】求出長后可得,再由弧長公式計算可得【詳解】由題意,解得,所以,,所以弧的長為故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】求出函數(shù)的周期即可求解.【詳解】根據(jù)題意,為偶函數(shù),即函數(shù)圖象關于直線對稱,則有,又由為奇函數(shù),則,則有,即,即函數(shù)是周期為4的周期函數(shù),所以,故答案為:12、【解析】根據(jù)平面向量基本定理,結合向量加法、減法法則,將向量、作為基向量,把向量表示出來,即可求出.【詳解】即:【點睛】本題考查平面向量基本定理的應用問題,解題時根據(jù)向量加法與減法法則將所求向量用題目選定的基向量表示出來,是基礎題目.13、(1),定義域為或;(2).【解析】(1)根據(jù)函數(shù)是奇函數(shù),得到,求出,再解不等式,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質,求出的最小值,即可得出結果.【詳解】(1)因為函數(shù)是奇函數(shù),所以,所以,即,所以,令,解得或,所以函數(shù)的定義域為或;(2),當時,所以,所以.因為,恒成立,所以,所以的取值范圍是.【點睛】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于??碱}型.14、8【解析】三階幻方,是最簡單的幻方,由1,2,3,4,5,6,7,8,9.其中有8種排法492、357、816;276、951、438;294、753、618;438、951、276;816、357、492;618、753、294;672、159、834;834、159、672故答案為:815、【解析】令得,把代入函數(shù)的解析式得,即得解.【詳解】解:因為函數(shù),其中,,令得,把代入函數(shù)的解析式得,所以函數(shù)(且)的圖像必經(jīng)過點的坐標為.故答案為:16、2【解析】根據(jù)自變量的范圍,由內至外逐層求值可解.【詳解】又故答案為:2.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,,;(2)零點為;(3)答案見解析.【解析】(1)根據(jù)解析式直接計算即可;(2)由可解得結果;(3)由(1)易知為非奇非偶函數(shù),用定義證明是上的減函數(shù).【詳解】(1),,,.(2)令得,故,即函數(shù)的零點為.(3)由(1)知,,且,故為非奇非偶函數(shù);是上的減函數(shù).證明如下:()任取,且,則,因為當時,,則,又,,所以,即,故函數(shù)是上的減函數(shù).18、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱錐的體積,關鍵是求三棱錐的高,如果不好求,可以換底,本題這樣容易求出三棱錐的體積為試題解析:證明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱錐的體積為考點:線面垂直及求三棱錐體積【方法點睛】(1)證明面面垂直常用面面垂直的判定定理,即利用線面垂直,證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質定理;三是平行線法(若兩條平行線中的一條垂直于這個平面,則另一條也垂直于這個平面.解題時,注意線線、線面與面面關系的相互轉化.或定義法利用線面垂直的判斷定理證明線面垂直,條件齊全,證明線線垂直時,要注意題中隱含的垂直關系,如等腰三角形的底邊上的高,中線和頂角的角平分線合一、矩形的內角、直徑所對的圓周角、菱形的對角線互相垂直、直角三角形等等;(2)利用棱錐的體積公式求體積,在求三棱柱體積時,選擇適當?shù)牡鬃鳛榈酌?,這樣體積容易計算19、(1)或;(2)【解析】分析:(1)由題意,設所求的直線方程為,分離令和,求得在坐標軸上的截距,利用三角形的面積公式,求得的值,即可求解;(2)設圓的半徑為,因為圓與直線相切,列出方程,求得半徑,即可得到圓的標準方程.詳解:(1)∵所求的直線與直線垂直,∴設所求的直線方程為,∵令,得;令,得.∵所求的直線與兩坐標軸圍成的三角形面積為4∴,∴∴所求的直線方程為或(2)設圓的半徑為,∵圓與直線相切∴∴所求的圓的方程為點睛:本題主要考查了直線方程的求解,以及直線與圓的位置關系的應用,著重考查了推理與計算能力,屬于基礎題.20、(1)或;(2)或.【解析】(1)分直線l的斜率不存在與直線l的斜率存在兩種討論,根據(jù)直線l與圓M相切進行計算,可得直線的方程;(2)設直線l的方程為,圓心到直線l的距離為d,可得的長,由的面積最大,可得,可得k的值,可得直線的方程.【詳解】解:(1)當直線l的斜率不存在時,直線l的方程為,此時直線l與圓M相切,所以符合題意,當直線l的斜率存在時,設l的斜率為k,則直線l的方程為,即,因為直線l與圓M相切,所以圓心到直線的距離等于圓的半徑,即,解得,即直線l的方程為;綜上,直線l的方程為或,(2)因為直線l與圓M交于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年六盤水道路旅客運輸從業(yè)資格證模擬考試
- 2024年烏魯木齊客運駕駛資格證考試試題及答案
- 2024年江蘇客運資格證考試試題模擬a1
- 2025屆福建省莆田六中語文高三第一學期期末教學質量檢測模擬試題含解析
- 2025屆湖北省黃岡市麻城市實驗高中高三語文第一學期期末質量跟蹤監(jiān)視模擬試題含解析
- 2024年黨校入黨積極分子培訓班培訓結業(yè)考試試卷及答案(共六套)
- 遼寧撫順市六校聯(lián)合體2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析
- 2025屆山東省文登市大水泊中學生物高一上期末學業(yè)水平測試模擬試題含解析
- 2025屆昆明市重點中學生物高二上期末復習檢測試題含解析
- 湖北省恩施一中、利川一中等四校2025屆高二上生物期末學業(yè)質量監(jiān)測試題含解析
- 城市軌道交通列車自動控制系統(tǒng)維護 課件 3.1 ZC系統(tǒng)認知
- 《全面質量管理》習題集(含答案)
- 河南國有資本運營集團有限公司招聘筆試題庫2024
- 2024年勞資員題庫
- Unit 3 Family Matters Developing Ideas Writing about a Family Memory 教學設計-2024-2025學年高一上學期英語外研版(2019)必修第一冊
- 《直播運營實務》 課件 5.3直播間場景搭建
- DL∕T 523-2017 化學清洗緩蝕劑應用性能評價指標及試驗方法
- CJT 427-2013 超高分子量聚乙烯膜片復合管
- AQ/T 2076-2020 頁巖氣鉆井井控安全技術規(guī)范(正式版)
- 新概念英語第四冊Lesson+42+Recording+an+earthquake+講義
- 中小學教師高級職稱面試講課答辯題目及答案(分五類共60題)
評論
0/150
提交評論