版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆內(nèi)蒙古巴林右旗大板第三中學數(shù)學高二上期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結(jié)論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.42.函數(shù)在區(qū)間(0,e)上的極小值為()A.-e B.1-eC.-1 D.13.已知實數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.204.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.5.直線的傾斜角為()A.30° B.60°C.90° D.120°6.等差數(shù)列中,,,則()A.6 B.7C.8 D.97.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.8.已知等比數(shù)列滿足,,則()A.21 B.42C.63 D.849.若,則實數(shù)的取值范圍是()A. B.C. D.10.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.11.已知,,,則點C到直線AB的距離為()A.3 B.C. D.12.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當p=p0時,f(p)最大,則p0=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集是________14.已知命題恒成立;,若p,均為真,則實數(shù)a的取值范圍__________15.已知數(shù)列中,,且數(shù)列為等差數(shù)列,則_____________.16.拋物線的焦點到準線的距離是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點是圓上異于、的任意一點,直線、分別交與、兩點(1)求過點且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當點變化時,以為直徑的圓是否過圓內(nèi)的一定點,若過定點,請求出定點;若不過定點,請說明理由18.(12分)設(shè)函數(shù)過點(1)求函數(shù)的單調(diào)區(qū)間和極值(要列表);(2)求函數(shù)在上的最大值和最小值.19.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點,求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.20.(12分)已知焦點為F的拋物線上一點到F的距離是4(1)求拋物線C的方程(2)若不過原點O的直線l與拋物線C交于A,B兩點(A,B位于x軸兩側(cè)),C的準線與x軸交于點E,直線與分別交于點M,N,若,證明:直線l過定點21.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前n項和.22.(10分)已知四棱錐的底面是矩形,底面,且,設(shè)E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.2、D【解析】求導判斷函數(shù)的單調(diào)性即可求解【詳解】的定義域為(0,+∞),,令,得x=1,當x∈(0,1)時,,單調(diào)遞減,當x∈(1,e)時,,單調(diào)遞增,故在x=1處取得極小值.故選:D.3、A【解析】根據(jù)約束條件作出可行域,再將目標函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線并平移使它經(jīng)過可行域點,經(jīng)過時,,解得,所以此時取得最大值,即有最大值,即故選:A.4、A【解析】利用平行線,將異面直線的夾角問題轉(zhuǎn)化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.5、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B6、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設(shè)數(shù)列的公差為,則,,所以故選:C7、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C8、D【解析】設(shè)等比數(shù)列公比為q,根據(jù)給定條件求出即可計算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D9、B【解析】由題意可知且,構(gòu)造函數(shù),可得出,由函數(shù)的單調(diào)性可得出,利用導數(shù)求出函數(shù)的最小值,可得出關(guān)于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構(gòu)造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構(gòu)造函數(shù),其中,則.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,則,所以,,解得.故選:B.10、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.11、D【解析】應用空間向量的坐標運算求在上投影長及的模長,再應用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設(shè)點C到直線AB的距離為d,則故選:D12、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當且僅當,即時,等號成立,即,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先將分式不等式化為一元二次不等式,再根據(jù)一元二次不等式的解法解不等式即可【詳解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集為{x|-4<x<2}故答案為.【點睛】本題主要考查分式不等式及一元二次不等式的解法,比較基礎(chǔ)14、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實數(shù)a的取值范圍為.故答案為:.15、【解析】由題意得:考點:等差數(shù)列通項16、4【解析】由y2=2px=8x知p=4,又焦點到準線的距離就是p,所以焦點到準線的距離為4.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)(3)過定點,定點坐標為【解析】(1)對所求直線的斜率是否存在進行分類討論,在所求直線斜率不存在時,直接驗證直線與圓相切;在所求直線斜率存在時,設(shè)所求直線方程為,利用點到直線的距離公式可得出關(guān)于的等式,求出的值,綜合可得出所求直線的方程;(2)分點在軸上方、點在軸下方兩種情況討論,求出點、的坐標,可得出所求圓的圓心坐標和半徑,即可得出所求圓的方程;(3)設(shè)直線的方程為,其中,求出點、的坐標,可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點的坐標.【小問1詳解】解:易知圓的方程為,圓心為原點,半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時直線與圓相切,合乎題意,若所求直線的斜率存在,設(shè)所求直線的方程為,即,由已知可得,解得,此時所求直線的方程為.綜上所述,過點且與圓相切的直線方程為或.【小問2詳解】解:易知直線的方程為,、,若點在軸上方,則直線的方程為,在直線的方程中,令,可得,即點,直線的方程為,在直線的方程中,令,可得,即點,線段的中點為,且,此時,所求圓的方程為;若點在軸下方,同理可求得所求圓的方程為.綜上所述,以為直徑的圓方程為.【小問3詳解】解:不妨設(shè)直線的方程為,其中,在直線的方程中,令,可得,即點,因為,則直線的方程為,在直線的方程中,令,可得,即點,線段中點為,,所以,以線段為直徑的圓的方程為,即,由,解得,因此,當點變化時,以為直徑的圓是否過圓內(nèi)的定點.18、(1)增區(qū)間,,減區(qū)間,極大值,極小值(2)最大值,最小值【解析】(1)將點代入函數(shù)解析式即可求得a,對函數(shù)求導,分析導函數(shù)的正負,確定單調(diào)區(qū)間及極值;(2)分析函數(shù)在此區(qū)間上的單調(diào)性,由極值、端點值確定最值.【小問1詳解】∵點在函數(shù)的圖象上,∴,解得,∴,∴,當或時,,單調(diào)遞增;當時,,單調(diào)遞減;當變化時,的變化情況如下表:00極大值極小值∴當時,有極大值,且極大值為,當時,有極小值,且極小值為,所以的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,極大值為,極小值為;【小問2詳解】由(1)可得:函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.∴,又,,∴19、(1)證明見解析(2)【解析】(1)通過構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標系,通過兩個面的法向量夾角的余弦值求出面面夾角的余弦值【小問1詳解】證明:設(shè)為的中點,連接,,因為,分別為,的中點.所以且,又,為的中點,所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問2詳解】取的中點,連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點,∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標系,則,,,,,,,,.設(shè)為平面的一個法向量,則有即取可取,設(shè)為平面的一個法向量,則有即可取,所以,設(shè)平面與平面的夾角為,則,∴,即平面與平面夾角的余弦值為.20、(1);(2)證明過程見解析.【解析】(1)利用拋物線的定義進行求解即可;(2)設(shè)出直線l的方程,與拋物線方程聯(lián)立,根據(jù)一元二次方程的根與系數(shù)關(guān)系進行求解證明即可.【小問1詳解】該拋物線的準線方程為,因為點到F的距離是4,所以有,所以拋物線C的方程為:;【小問2詳解】該拋物線的準線方程為,設(shè)直線l的方程為:,與拋物線方程聯(lián)立,得,不妨設(shè),因此,直線的斜率為:,所以方程為:,當時,,即,同理,因為,所以有,而,所以有,所以直線l的方程為:,因此直線l恒過.【點睛】關(guān)鍵點睛:把直線l的方程為:,利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1)證明見解析;(2)當為偶數(shù)時,;當為奇數(shù)時,.【解析】(1)根據(jù)等比數(shù)列的定義進行證明即可;(2)利用分組求和法,結(jié)合錯位相減法進行求解即可.【小問1詳解】由題知:所以又因為所以所以數(shù)列為以-1為首項,-1為公比的等比數(shù)列;【小問2詳解】由(1)知:,所以,,記,所以,當為偶數(shù)時,;當為奇數(shù)時,;記兩式相減得:,所以,所以,當偶數(shù)時,;當為奇數(shù)時,.22、(1)證明見解析(2)【解析】(1)連接CH,延
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《綿陽求職招聘技巧》課件
- 2020-2021學年遼寧省沈陽市郊聯(lián)體高一下學期期末考試歷史試題
- 小學一年級10以內(nèi)數(shù)字的分與合
- 小學數(shù)學新人教版一年級下冊20以內(nèi)口算練習題大全
- 小學三年級數(shù)學三位數(shù)加減法口算題
- 《汽車行業(yè)概述》課件
- 《運輸與包裝》課件
- 吉他行業(yè)客服工作總結(jié)用心服務(wù)打造音樂快樂
- 《光纖通信基礎(chǔ)知識》課件
- 酒店招聘與人才引進策略
- 監(jiān)事會年度工作計劃
- 2024中國近海生態(tài)分區(qū)
- 山東省濟南市2023-2024學年高一上學期1月期末考試化學試題(解析版)
- 企業(yè)節(jié)能獎懲管理制度(3篇)
- 統(tǒng)編版2024-2025學年三年級上冊語文期末情景試卷 (無答案)
- 2024年時事政治試題【有答案】
- 造價咨詢部組織架構(gòu)及基本工作流程
- 新媒體代運營協(xié)議合同書
- 2024年1月國家開放大學法律事務(wù)??啤睹穹▽W(1)》期末紙質(zhì)考試試題及答案
- 智研咨詢發(fā)布:中國種豬行業(yè)市場現(xiàn)狀、發(fā)展概況、未來前景分析報告
- 2024年信息系統(tǒng)項目管理師(綜合知識、案例分析、論文)合卷軟件資格考試(高級)試題與參考答案
評論
0/150
提交評論