版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省永春一中2025屆數(shù)學高二上期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x,y是實數(shù),且,則的最大值是()A. B.C. D.2.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.3.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.24.等差數(shù)列中,,,則()A.1 B.2C.3 D.45.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.6.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=17.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準線的距離為3,則AF的中點到準線的距離為()A.1 B.2C.3 D.48.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.329.設函數(shù)在R上可導,其導函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值10.雙曲線的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為3211.已知呈線性相關的變量x與y的部分數(shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.712.已知直線和互相垂直,則實數(shù)的值為()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平行六面體中,底面是邊長為1的正方形,若,且,則的長為_________14.關于曲線,給出下列三個結(jié)論:①曲線關于原點對稱,但不關于軸、軸對稱;②曲線恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);③曲線上任意一點到原點的距離都不大于.其中,正確結(jié)論的序號是________.15.命題“任意,”為真命題,則實數(shù)a的取值范圍是______.16.攢尖是古代中國建筑中屋頂?shù)囊环N結(jié)構(gòu)形式,依其平面有圓形攢尖、三角攢尖、四角攢尖、八角攢尖.如圖屬重檐四角攢尖,它的上層輪廓可近似看作一個正四棱錐,若此正四棱錐的側(cè)面積是底面積的2倍,則側(cè)面與底面的夾角為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點,(1)求證:平面平面;(2)求二面角的大小18.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點,求直線AD與EM所成角的取值范圍19.(12分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和20.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面21.(12分)在①,;②,;③,.這三個條件中任選一個,補充在下面問題中.問題:已知數(shù)列的前n項和為,,___________.(1)求數(shù)列的通項公式(2)已知,求數(shù)列的前n項和.22.(10分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將方程化為圓的標準方程,則的幾何意義是圓上一點與點連線的斜率,進而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點與點A連線的斜率,設,即,當此直線與圓相切時,斜率最大或最小,當切線位于切線AB時斜率最大.此時,,,所以的最大值為.故選:D2、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導公式要記熟3、B【解析】直接利用空間向量垂直的坐標運算即可解決.【詳解】∵∴∴,解得,故選:B.4、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B5、B【解析】利用函數(shù)的奇偶性排除選項A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域為,關于原點對稱.所以函數(shù)是奇函數(shù),排除選項A,C.當時,,排除選項D,故選:B6、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題7、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點到準線的距離【詳解】拋物線方程為,則,由于中點到準線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點到準線的距離為.故選:C8、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C9、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點定位】判斷函數(shù)的單調(diào)性一般利用導函數(shù)的符號,當導函數(shù)大于0則函數(shù)遞增,當導函數(shù)小于0則函數(shù)遞減10、D【解析】根據(jù)雙曲線的離心率、漸近線、點到直線距離公式、三角形的面積等知識來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯誤.故選:D11、A【解析】根據(jù)回歸直線過樣本點的中心進行求解即可.【詳解】由題意可得,,則,解得故選:A.12、B【解析】由兩直線垂直可得出關于實數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因為,所以,即,故14、①③【解析】設為曲線上任意一點,判斷、、是否滿足曲線方程即可判斷①;求出曲線過的整點即可判斷②;由條件利用即可得,即可判斷③;即可得解.【詳解】設為曲線上任意一點,則,設點關于原點、軸、軸的對稱點分別為、、,因為;;;所以點在曲線上,點、點不在曲線上,所以曲線關于原點對稱,但不關于軸、軸對稱,故①正確;當時,;當,.此外,當時,;當時,.故曲線過整點,,,,,,故②錯誤;又,所以恒成立,由可得,當且僅當時等號成立,所以,所以曲線上任一點到原點的距離,故③正確.故答案為:①③.【點睛】本題考查了與曲線方程有關的命題真假判斷,屬于中檔題.15、【解析】分離常數(shù),將問題轉(zhuǎn)化求函數(shù)最值問題.【詳解】任意,恒成立恒成立,故只需,記,,易知,所以.故答案為:16、【解析】設此四棱錐P-ABCD底面邊長為,斜高為,連結(jié)AC、BD交于點O,連結(jié)OP.則以O為原點,為x、y、z軸正半軸建立空間直角坐標系,用向量法求出側(cè)面與底面夾角.【詳解】設此四棱錐P-ABCD底面邊長為,斜高為,連結(jié)AC、BD交于點O,連結(jié)OP.則,,以O為原點,為x、y、z軸正半軸建立空間直角坐標系則,,設平面的法向量為,則,令,則,顯然平面的法向量為所以,所以側(cè)面與底面的夾角為故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標系,利用空間向量法求出二面角的余弦值,即可得解;【小問1詳解】證明:因為為的中點,,所以,又,所以四邊形為平行四邊形,因為,所以平行四邊形是矩形,所以,因為,所以,又因為平面平面,平面平面面,所以平面,因為面,所以,又因為,平面,所以平面,因為平面,所以平面平面;【小問2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標系,則則,設平面的一個法向量,由則,令,則,所以,設平面的一個法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;18、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進而求出三棱錐的體積;(2)利用空間基底表達出,結(jié)合第一問結(jié)論求出,從而求出答案.【小問1詳解】取AC的中點F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因為,所以平面DEF,因為DH平面DEF,所以AC⊥DH,因為,所以DH⊥平面ABC,因為,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因為,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設,則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點,所以,所以,因為三棱錐中,所以,所以,故直線AD與EM所成角范圍為.【點睛】針對于立體幾何中角度范圍的題目,可以建立空間直角坐標系來進行求解,若不容易建立坐標系時,也可以通過基底表達出各個向量,進而求出答案.19、(1)(2)【解析】(1)設等差數(shù)列公差為d,首項為a1,根據(jù)已知條件列出方程組求解a1,d,代入通項公式即可得答案;(2)根據(jù)等差、等比數(shù)列的前n項和公式,利用分組求和法即可求解【小問1詳解】解:設等差數(shù)列公差為d,首項為a1,由題意,有,解得,所以;【小問2詳解】解:,所以20、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.21、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數(shù)列,公差,求出其通項公式后,再由求得通項公式,注意;選②,由可變形已知條件得是等差數(shù)列,從而求得通項公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯位相減法求和【小問1詳解】選①,由得,,所以,即,所以是等差數(shù)列,公差,又,,,所以,,時,也適合所以;選②,由得,所以等差數(shù)列,公差為,又,所以;選③,由得,以下同選①,【小問2詳解】由(1),,,兩式相減得,所以22、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問1詳解】在中,,因為,分別是,邊上的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學五年級數(shù)學小數(shù)乘除法豎式計算練習題
- 土方分包合同范本-合同范本
- 《美容項目專業(yè)知識》課件
- 《醫(yī)院急診科的管理》課件
- 屆每日語文試題精練
- 更新采伐公路護路林許可申請表
- 《家用醫(yī)療用具使用》課件
- 金融產(chǎn)業(yè)電話理財顧問績效總結(jié)
- 快遞公司保安工作總結(jié)
- 醫(yī)療器械行業(yè)安全工作總結(jié)
- ASTM-A269-A269M無縫和焊接奧氏體不銹鋼管
- 中、高級鉗工訓練圖紙
- 2024-2030年中國車載動態(tài)稱重行業(yè)投融資規(guī)模與發(fā)展態(tài)勢展望研究報告
- 乒乓球教案完整版本
- 2024年重慶公交車從業(yè)資格證考試題庫
- 銀行解押合同范本
- 2024-2030年中國紋身針行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 部編版道德與法治九年級上冊每課教學反思
- 2024云南保山電力股份限公司招聘(100人)(高頻重點提升專題訓練)共500題附帶答案詳解
- 人教版(2024)七年級上冊英語 Unit 1 You and Me 語法知識點復習提綱與學情評估測試卷匯編(含答案)
- 六年級期末家長會課件下載
評論
0/150
提交評論