2024屆云南省玉溪市華寧二中高三數(shù)學(xué)試題下學(xué)期第一次月考試題_第1頁(yè)
2024屆云南省玉溪市華寧二中高三數(shù)學(xué)試題下學(xué)期第一次月考試題_第2頁(yè)
2024屆云南省玉溪市華寧二中高三數(shù)學(xué)試題下學(xué)期第一次月考試題_第3頁(yè)
2024屆云南省玉溪市華寧二中高三數(shù)學(xué)試題下學(xué)期第一次月考試題_第4頁(yè)
2024屆云南省玉溪市華寧二中高三數(shù)學(xué)試題下學(xué)期第一次月考試題_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆云南省玉溪市華寧二中高三數(shù)學(xué)試題下學(xué)期第一次月考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.2.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.3.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示月日至月日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動(dòng)最大D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值4.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.5.函數(shù)的大致圖像為()A. B.C. D.6.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.847.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.48.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,9.過拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.10.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}11.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.812.已知曲線,動(dòng)點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長(zhǎng)為()A. B.2 C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在△ABC中,AB=AC=2,,,AE的延長(zhǎng)線交BC邊于點(diǎn)F,若,則____.14.利用等面積法可以推導(dǎo)出在邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長(zhǎng)為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______15.在的二項(xiàng)展開式中,所有項(xiàng)的系數(shù)的和為________16.設(shè)函數(shù),則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),求證:.18.(12分)已知橢圓的離心率為,直線過橢圓的右焦點(diǎn),過的直線交橢圓于兩點(diǎn)(均異于左、右頂點(diǎn)).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點(diǎn).若直線交于點(diǎn),直線交于點(diǎn),試判斷是否為定值,若是,求出定值;若不是,說明理由.19.(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)于的函數(shù)關(guān)系式;(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時(shí)腰的長(zhǎng)度.20.(12分)在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn).曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)過點(diǎn)作直線的垂線交曲線于兩點(diǎn)(在軸上方),求的值.21.(12分)已知函數(shù).(Ⅰ)已知是的一個(gè)極值點(diǎn),求曲線在處的切線方程(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù).22.(10分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:【點(diǎn)睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問題常見方法,有一定難度.2、A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.3、D【解析】

根據(jù)新增確診曲線的走勢(shì)可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線的走勢(shì)可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對(duì)于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì),A選項(xiàng)正確;對(duì)于B選項(xiàng),由圖象可知,隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項(xiàng)正確;對(duì)于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動(dòng)最大,C選項(xiàng)正確;對(duì)于D選項(xiàng),在月日及以前,我國(guó)新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.4、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.5、D【解析】

通過取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)椋?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.6、B【解析】

畫出幾何體的直觀圖,計(jì)算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.7、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.8、B【解析】

根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.9、D【解析】

根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.10、B【解析】

按補(bǔ)集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.11、B【解析】

建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.12、C【解析】

設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點(diǎn),所以,即都在直線上,所以直線的方程為,恒過定點(diǎn),即直線過圓心,則直線截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

過點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.14、【解析】

計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.15、1【解析】

設(shè),令,的值即為所有項(xiàng)的系數(shù)之和。【詳解】設(shè),令,所有項(xiàng)的系數(shù)的和為?!军c(diǎn)睛】本題主要考查二項(xiàng)式展開式所有項(xiàng)的系數(shù)的和的求法─賦值法。一般地,對(duì)于,展開式各項(xiàng)系數(shù)之和為,注意與“二項(xiàng)式系數(shù)之和”區(qū)分。16、【解析】

由自變量所在定義域范圍,代入對(duì)應(yīng)解析式,再由對(duì)數(shù)加減法運(yùn)算法則與對(duì)數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因?yàn)楹瘮?shù),則因?yàn)椋瑒t故故答案為:【點(diǎn)睛】本題考查分段函數(shù)求值,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析【解析】

(Ⅰ)求導(dǎo)得到,討論,,三種情況得到單調(diào)區(qū)間.(Ⅱ)設(shè),要證,即證,,設(shè),根據(jù)函數(shù)單調(diào)性得到證明.【詳解】(Ⅰ),令,,(1)當(dāng),即時(shí),,,在上單調(diào)遞增;(2)當(dāng),即時(shí),設(shè)的兩根為(),,①若,,時(shí),,所以在和上單調(diào)遞增,時(shí),,所以在上單調(diào)遞減,②若,,時(shí),,所以在上單調(diào)遞減,時(shí),,所以在上單調(diào)遞增.綜上,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(Ⅱ)不妨設(shè),要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調(diào)遞增,所以,因?yàn)?,所以,所?【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,證明不等式,意在考查學(xué)生的分類討論能力和計(jì)算能力.18、(1)(2)定值為0.【解析】

(1)根據(jù)直線方程求焦點(diǎn)坐標(biāo),即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點(diǎn)坐標(biāo),化簡(jiǎn),再聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡(jiǎn)得結(jié)果.【詳解】(1)因?yàn)橹本€過橢圓的右焦點(diǎn),所以,因?yàn)殡x心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點(diǎn)睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.19、(1),(2)側(cè)面積取得最大值時(shí),等腰三角形的腰的長(zhǎng)度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導(dǎo)分析,得在時(shí)取得極大值,也是最大值.試題解析:(1)設(shè)交于點(diǎn),過作,垂足為,在中,,,在中,,所以S,(2)要使側(cè)面積最大,由(1)得:令,所以得,由得:當(dāng)時(shí),,當(dāng)時(shí),所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時(shí)取得極大值,也是最大值;所以當(dāng)時(shí),側(cè)面積取得最大值,此時(shí)等腰三角形的腰長(zhǎng)答:側(cè)面積取得最大值時(shí),等腰三角形的腰的長(zhǎng)度為.20、(1),;(2)【解析】

(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由題意得點(diǎn)的直角坐標(biāo)為,將點(diǎn)代入得則直線的普通方程為.由得,即.故曲線的直角坐標(biāo)方程為.(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得.設(shè)對(duì)應(yīng)參數(shù)為,對(duì)應(yīng)參數(shù)為.則,,且..【點(diǎn)睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問題.21、(Ⅰ);(Ⅱ)見解析【解析】

(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用x=2是f(x)的一個(gè)極值點(diǎn),得f'(2)=0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構(gòu)造函數(shù)求出函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合轉(zhuǎn)化為圖象交點(diǎn)個(gè)數(shù)進(jìn)行求解即可.【詳解】(Ⅰ)因?yàn)?,則,因?yàn)槭堑囊粋€(gè)極值點(diǎn),所以,即,所以,因?yàn)?,,則直線方程為,即;(Ⅱ)因?yàn)?,所以,所以,設(shè),則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設(shè),則,所以在上是減函數(shù),上是增函數(shù),所以,所以當(dāng)時(shí),,函數(shù)在是減函數(shù),當(dāng)時(shí),,函數(shù)在是增函數(shù),因?yàn)闀r(shí),,,,所以當(dāng)時(shí),方程無實(shí)數(shù)根,當(dāng)時(shí),方程有兩個(gè)不相等實(shí)數(shù)根,當(dāng)或時(shí),方程有1個(gè)實(shí)根.【點(diǎn)睛】本題考查函數(shù)中由極值點(diǎn)求參,導(dǎo)數(shù)的幾何意義,還考查了利用導(dǎo)數(shù)研究方程根的個(gè)數(shù)問題,屬于難題.22、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】

(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論