版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江省黑河市2025屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間向量,則()A. B.C. D.2.如圖,P為圓錐的頂點,O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.3.若雙曲線的漸近線方程為,則實數(shù)a的值為()A B.C.2 D.4.已知為等差數(shù)列,且,,則()A. B.C. D.5.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”6.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.7.一組樣本數(shù)據(jù):,,,,,由最小二乘法求得線性回歸方程為,若,則實數(shù)m的值為()A.5 B.6C.7 D.88.在中,若,,則外接圓半徑為()A. B.C. D.9.已知橢圓的離心率為,則()A. B.C. D.10.設(shè)圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.11.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點,,分別為左、右焦點,為橢圓上一點,下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個內(nèi)角為12.在四棱錐中,分別為的中點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.14.曲線在點M(π,0)處的切線方程為________15.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________16.已知函數(shù)在處有極值2,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列中,首項,公差,且數(shù)列的前項和為(1)求和;(2)設(shè),求數(shù)列的前項和18.(12分)已知等差數(shù)列滿足:,(1)求數(shù)列的通項公式,以及前n項和公式;(2)若,求數(shù)列的前n項和19.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.20.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當(dāng)時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.21.(12分)在中,,,的對邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長22.(10分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】A利用向量模長的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因為,所以A不正確:因為不存在實數(shù)使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C2、B【解析】先求出,再利用向量的線性運算和數(shù)量積計算求解.【詳解】解:由題得,,故選:B3、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D4、B【解析】由已知條件求出等差數(shù)列的公差,從而可求出【詳解】設(shè)等差數(shù)列的公差為,由,,得,解得,所以,故選:B5、C【解析】結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點睛】本題考查了互斥事件和對立事件的定義的運用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.6、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.7、B【解析】求出樣本的中心點,再利用回歸直線必過樣本的中心點計算作答.【詳解】依題意,,則這個樣本的中心點為,因此,,解得,所以實數(shù)m的值為6.故選:B8、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A9、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進而可得.【詳解】因為,則,所以.故選:D10、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A11、B【解析】先求出橢圓的頂點和焦點坐標(biāo),對于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對于A,若,則,∴,∴,不滿足條件,故A不符合條件;對于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對于D,四邊形的一個內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.12、A【解析】結(jié)合空間幾何體以及空間向量的線性運算即可求出結(jié)果.【詳解】因為分別為的中點,則,,,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關(guān)系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:14、【解析】由題意可得,據(jù)此可得切線的斜率,結(jié)合切點坐標(biāo)即可確定切線方程.【詳解】由函數(shù)的解析式可得:,所求切線的斜率為:,由于切點坐標(biāo)為,故切線方程為:.【點睛】導(dǎo)數(shù)運算及切線的理解應(yīng)注意的問題一是利用公式求導(dǎo)時要特別注意除法公式中分子的符號,防止與乘法公式混淆二是直線與曲線公共點的個數(shù)不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點三是復(fù)合函數(shù)求導(dǎo)的關(guān)鍵是分清函數(shù)的結(jié)構(gòu)形式.由外向內(nèi)逐層求導(dǎo),其導(dǎo)數(shù)為兩層導(dǎo)數(shù)之積.15、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據(jù)可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.16、6【解析】根據(jù)函數(shù)在處有極值2,可得,解方程組即可得解.【詳解】解:,因為函數(shù)在處有極值2,所以,即,解得,則,故當(dāng)時,,當(dāng)時,,所以函數(shù)在處有極大值,所以,所以.故答案為:6.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)題意,結(jié)合等差數(shù)列的通項公式與求和公式,即可求解;(2)根據(jù)題意,求出,結(jié)合等差數(shù)列求和公式,即可求解.【小問1詳解】根據(jù)題意,易知;.【小問2詳解】根據(jù)題意,易知,因為,所以數(shù)列是首項為2,公差為的等差數(shù)列,故18、(1),(2)【解析】(1)由,,列出方程組,求得,即可求得數(shù)列的通項公式,利用公式可得.(2)由(1)求得,結(jié)合“裂項法”求和,即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,可得,解得,所以數(shù)列的通項公式.(2)由(1)知,可得,所以數(shù)列的前項和:.【點睛】關(guān)鍵點睛:本題主要考查了等差數(shù)列的通項公式的求解,以及“裂項法”求和的應(yīng)用,解答本題的關(guān)鍵是將的通項裂成兩項的差,利用裂項相消求和,屬于中檔題.19、(1)證明過程見解析;(2).【解析】(1)利用平面與平面垂直的性質(zhì)得出直線與平面垂直,進而得出平面;(2)建立空間直角坐標(biāo)系即可求解.【小問1詳解】證明:因為平面平面,交線為且平面中,所以平面又平面所以又,且所以平面【小問2詳解】解:由(1)知,平面且所以、、兩兩垂直因此以原點,建立如圖所示的空間直角坐標(biāo)系因為,,,設(shè)所以,,,,由(1)知,平面所以為平面的法向量且因為直線與平面所成角的正弦值為所以解得:所以,又,,所以,,,設(shè)平面與平面的法向量分別為:,所以,令,則令,則,,即設(shè)平面與平面夾角為則所以平面與平面夾角的余弦值為.20、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導(dǎo)函數(shù)的零點即可.【詳解】(1)證明:當(dāng)時,,則,當(dāng)時,,則,又因為,所以當(dāng)時,,僅時,,所以在上是單調(diào)遞減,所以,即.(2),因為,所以,①當(dāng)時,恒成立,所以在上單調(diào)遞增,沒有極值點.②當(dāng)時,在區(qū)間上單調(diào)遞增,因為.當(dāng)時,,所以在上單調(diào)遞減,沒有極值點.當(dāng)時,,所以存在,使當(dāng)時,時,所以在處取得極小值,為極小值點.綜上可知,若函數(shù)在上存在極值點,則實數(shù).【點睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進而證明不等式的方法.同時也考查了利用導(dǎo)數(shù)分析函數(shù)極值點的問題,需要結(jié)合零點存在定理求解.屬于難題.21、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡整理,即可求解(2)由的面積為4,結(jié)合(1)中結(jié)論,可得,結(jié)合余弦定理,可得,從而可求的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆四川省資陽市高中高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析
- 遼寧葫蘆島協(xié)作校2025屆高二上生物期末調(diào)研試題含解析
- 2025屆江西省吉安市新干中學(xué)語文高三第一學(xué)期期末經(jīng)典模擬試題含解析
- 廣東省深圳市格睿特高級中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析
- 2025屆湖南省長沙市重點中學(xué)生物高一第一學(xué)期期末統(tǒng)考模擬試題含解析
- 甘肅省蘭州市甘肅一中2025屆高一上數(shù)學(xué)期末調(diào)研試題含解析
- 2025屆河南省焦作市高一上數(shù)學(xué)期末綜合測試模擬試題含解析
- 河北省邯鄲市永年區(qū)第二中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析
- 云南省賓川縣2025屆生物高三第一學(xué)期期末綜合測試試題含解析
- 2025屆湖南省長沙市高三語文第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 中國近代史綱要試題及答案(全套)
- 吉林市2024-2025學(xué)年度高三第一次模擬測試 (一模)數(shù)學(xué)試卷(含答案解析)
- 電動汽車充電設(shè)施及場站測試評價規(guī)范第3部分:場站服務(wù)能力
- 2025屆北京西城14中高二生物第一學(xué)期期末檢測模擬試題含解析
- 部編版二年級上冊-課文一-快樂讀書吧:讀讀童話故事-孤獨的小螃蟹(課件)(共26張課件)
- 消防安全方案及措施
- 《春秋》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 工商管理大類的課程設(shè)計
- 2024-2025學(xué)年初中英語七年級上冊(外研版)上課課件 Unit 5 Fantastic friends 2.Developing ideas
- 2024年高考數(shù)學(xué)試卷(北京)(空白卷)
- 2024年大學(xué)生信息素養(yǎng)大賽(校賽)培訓(xùn)考試題庫(含答案)
評論
0/150
提交評論