版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
東北育才中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)2.如圖,已知直線與拋物線相交于A,B兩點(diǎn),且A、B兩點(diǎn)在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.3.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.15.已知集合,則的值域?yàn)椋ǎ〢. B. C. D.6.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612427.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.158.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.9.若復(fù)數(shù)滿足,則()A. B. C. D.10.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.3211.下圖是我國第24~30屆奧運(yùn)獎牌數(shù)的回眸和中國代表團(tuán)獎牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)的中位數(shù)是54.512.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在上僅有2個零點(diǎn),設(shè),則在區(qū)間上的取值范圍為_______.14.已知向量,,且,則________.15.已知是定義在上的奇函數(shù),當(dāng)時,,則不等式的解集用區(qū)間表示為__________.16.在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個數(shù);(2)試探討是否存在實(shí)數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.18.(12分)已知函數(shù).(1)當(dāng)時.①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時,設(shè),(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.19.(12分)已知,均為正數(shù),且.證明:(1);(2).20.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.21.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.22.(10分)如圖,正方體的棱長為2,為棱的中點(diǎn).(1)面出過點(diǎn)且與直線垂直的平面,標(biāo)出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.2、C【解析】
直線恒過定點(diǎn),由此推導(dǎo)出,由此能求出點(diǎn)的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過定點(diǎn),如圖過A、B分別作于M,于N,由,則,點(diǎn)B為AP的中點(diǎn)、連接OB,則,∴,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為,把代入直線,解得,故選:C.【點(diǎn)睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運(yùn)用,屬于中檔題.3、B【解析】
化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.4、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時,,則;當(dāng)時,則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時,的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯點(diǎn)是計(jì)算.5、A【解析】
先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域?yàn)楣蔬xA【點(diǎn)睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題6、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。7、B【解析】,∴,選B.8、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點(diǎn)睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.9、C【解析】
化簡得到,,再計(jì)算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計(jì)算能力.10、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.11、B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡單題目.12、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因?yàn)?,所以O(shè)在AB的中垂線上,即O在兩個圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【點(diǎn)睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)零點(diǎn)個數(shù)求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因?yàn)樵谏嫌袃蓚€零點(diǎn),所以,所以,所以且,所以,所以,所以,令,所以,所以,因?yàn)椋?,所以,所以,所以,,所?故答案為:.【點(diǎn)睛】本題考查三角函數(shù)圖象與性質(zhì)的綜合,其中涉及到換元法求解三角函數(shù)值域的問題,難度較難.對形如的函數(shù)的值域求解,關(guān)鍵是采用換元法令,然后根據(jù),將問題轉(zhuǎn)化為關(guān)于的函數(shù)的值域,同時要注意新元的范圍.14、【解析】
根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實(shí)數(shù)的等式,即可求得實(shí)數(shù)的值.【詳解】,且,則,解得.故答案為:.【點(diǎn)睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】設(shè),則,由題意可得故當(dāng)時,由不等式,可得,或求得,或故答案為(16、②③【解析】
根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項(xiàng)得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因?yàn)榧滓覂尚5哪猩膬?yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因?yàn)椴荒艽_定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點(diǎn)睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)個;(1)存在,.【解析】試題分析:(1)設(shè),對其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點(diǎn),即在上零點(diǎn)的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時,,∴,∵,∴4.故當(dāng)時,對恒成立,.......................8分當(dāng)即時,在上遞減,∴.∵,∴,故當(dāng)時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實(shí)數(shù),使得對恒成立,且的取值范圍為................................................11分考點(diǎn):導(dǎo)數(shù)應(yīng)用.【思路點(diǎn)睛】本題考查了函數(shù)恒成立問題;利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,進(jìn)一步求最值;屬于難題.本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.18、(1)①;②8079;(2).【解析】
(1)①時,,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對任意給定的,,在區(qū)間,上總存在兩個不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)?,,故,,①此時,當(dāng)變化時、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對任意給定的,在區(qū)間上總存在兩個不同的,使得成立,當(dāng)且僅當(dāng)滿足下列條件,即令,,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減所以,對任意,有,即②對任意恒成立.由③式解得:④綜合①④可知,當(dāng)時,對任意給定的,在上總存在兩個不同的,使成立.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問題,會利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時所滿足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問題解決.19、(1)見解析(2)見解析【解析】
(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時取等號,∴.(2).當(dāng)且僅當(dāng)時取等號.【點(diǎn)睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)證明見詳解;(2).【解析】
(1)取中點(diǎn)為,通過證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學(xué)期教研工作計(jì)劃例文(三篇)
- 【《基于Android的圖書管理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)》8100字(論文)】
- 數(shù)學(xué)新學(xué)期的計(jì)劃(15篇)
- 幼兒防溺水自我承諾書(5篇)
- 2024年因病缺課登記制度樣本(二篇)
- 2024年圖書館工作職責(zé)工作職模版(二篇)
- 2024年室內(nèi)設(shè)計(jì)師個人計(jì)劃(二篇)
- 2024年學(xué)校德育處工作計(jì)劃范文(三篇)
- 2024年醫(yī)院科室年度工作計(jì)劃范本(三篇)
- 2024年幼兒園大班班級安全工作計(jì)劃范本(二篇)
- 中考作文考前輔導(dǎo):意高文自勝
- 公司收購聲明與承諾函
- 歷年北京市中小學(xué)生天文觀測競賽_天文知識_小學(xué)組
- 語文論文淺談如何在語文教學(xué)中培養(yǎng)學(xué)生情感
- 危險化學(xué)品安全使用許可適用行業(yè)目錄(2013年版)3
- 濕法脫硫工藝計(jì)算書
- 轎車子午線輪胎用簾線品種及其性能
- 天然氣室外立管吊裝專項(xiàng)施工方案(完整版)
- 淺談博物館布展設(shè)計(jì)的內(nèi)容與形式
- 在音樂教學(xué)中培養(yǎng)學(xué)生的人文素養(yǎng)
- 4各部門定期識別適用的安全法律法規(guī)、標(biāo)準(zhǔn)規(guī)范和其他要求清單
評論
0/150
提交評論