版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆黑龍江省佳木斯市建三江第一中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則()A.60 B.80C.90 D.1002.函數(shù)的大致圖象為A. B.C. D.3.下列求導(dǎo)運(yùn)算正確的是()A. B.C. D.4.正數(shù)a,b滿足,若不等式對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是A. B.C. D.5.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.26.點(diǎn)A是曲線上任意一點(diǎn),則點(diǎn)A到直線的最小距離為()A. B.C. D.7.某校初一有500名學(xué)生,為了培養(yǎng)學(xué)生良好的閱讀習(xí)慣,學(xué)校要求他們從四大名著中選一本閱讀,其中有200人選《三國演義》,125人選《水滸傳》,125人選《西游記》,50人選《紅樓夢(mèng)》,若采用分層抽樣的方法隨機(jī)抽取40名學(xué)生分享他們的讀后感,則選《西游記》的學(xué)生抽取的人數(shù)為()A.5 B.10C.12 D.158.下列通項(xiàng)公式中,對(duì)應(yīng)數(shù)列是遞增數(shù)列的是()A B.C. D.9.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.10.在棱長為1的正四面體中,點(diǎn)滿足,點(diǎn)滿足,當(dāng)和的長度都為最短時(shí),的值是()A. B.C. D.11.設(shè)是周期為2的奇函數(shù),當(dāng)時(shí),,則()A. B.C. D.12.設(shè)集合,則AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn),點(diǎn)是直線上的動(dòng)點(diǎn),則的最小值是_____________14.若雙曲線的左、右焦點(diǎn)為,,直線與雙曲線交于兩點(diǎn),且,為坐標(biāo)原點(diǎn),又,則該雙曲線的離心率為__________.15.若等比數(shù)列滿足,則的前n項(xiàng)和____________16.如圖,橢圓的左右焦點(diǎn)為,,以為圓心的圓過原點(diǎn),且與橢圓在第一象限交于點(diǎn),若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列是等比數(shù)列,,(1)求,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和18.(12分)從①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中并作答:已知等差數(shù)列公差大于零,且前n項(xiàng)和為,,______,,求數(shù)列的前n項(xiàng)和.(注:如果選擇多個(gè)條件分別解答,那么按照第一個(gè)解答計(jì)分)19.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對(duì)角線交于點(diǎn)D(1,0),kMA與kMB的等比中項(xiàng)為,直線AM,NB相交于點(diǎn)P.(1)求點(diǎn)M的軌跡C的方程;(2)若點(diǎn)N也在C上,點(diǎn)P是否在定直線上?如果是,求出該直線,如果不是,請(qǐng)說明理由.20.(12分)已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)(4,0)的直線l交橢圓C于M、N兩點(diǎn),且OM⊥ON,求直線l的方程.21.(12分)已知命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.22.(10分)已知拋物線C:焦點(diǎn)F的橫坐標(biāo)等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點(diǎn),判斷原點(diǎn)與以線段AB為直徑的圓的位置關(guān)系,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因?yàn)椋?,故,解得,故,故選:D.2、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當(dāng)時(shí)排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因?yàn)闀r(shí),,排除B.故選:D.3、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和求導(dǎo)法則判斷.【詳解】,,,,只有B正確.故選:B.【點(diǎn)睛】本題考查基本初等函數(shù)的導(dǎo)數(shù)公式,考查導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.4、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時(shí),,若不等式對(duì)任意實(shí)數(shù)x恒成立,則對(duì)任意實(shí)數(shù)x恒成立,即對(duì)任意實(shí)數(shù)x恒成立,,,故選:A【點(diǎn)睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.5、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.6、A【解析】動(dòng)點(diǎn)在曲線,則找出曲線上某點(diǎn)的斜率與直線的斜率相等的點(diǎn)為距離最小的點(diǎn),利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域?yàn)椋簩?duì)求導(dǎo)可得:令解得:(其中舍去)當(dāng)時(shí),,則此時(shí)該點(diǎn)到直線的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:解得:故選:A7、B【解析】根據(jù)分層抽樣的方法,列出方程,即可求解.【詳解】根據(jù)分層抽樣的方法,可得選《西游記》的學(xué)生抽取的人數(shù)為故選:B.8、C【解析】根據(jù)數(shù)列單調(diào)性的定義逐項(xiàng)判斷即可.【詳解】對(duì)于A,B選項(xiàng)對(duì)應(yīng)數(shù)列是遞減數(shù)列.對(duì)于C選項(xiàng),,故數(shù)列是遞增數(shù)列.對(duì)于D選項(xiàng),由于.所以數(shù)列不是遞增數(shù)列故選:C.9、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點(diǎn)在軸上,所以漸近線方程為:,又因?yàn)殡p曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.10、A【解析】根據(jù)給定條件確定點(diǎn)M,N的位置,再借助空間向量數(shù)量積計(jì)算作答.【詳解】因,則,即,而,則共面,點(diǎn)M在平面內(nèi),又,即,于是得點(diǎn)N在直線上,棱長為1的正四面體中,當(dāng)長最短時(shí),點(diǎn)M是點(diǎn)A在平面上的射影,即正的中心,因此,,當(dāng)長最短時(shí),點(diǎn)N是點(diǎn)D在直線AC上的射影,即正邊AC的中點(diǎn),,而,,所以.故選:A11、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點(diǎn)睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時(shí),一般先用周期性化自變量到已知區(qū)間關(guān)于原點(diǎn)對(duì)稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值12、B【解析】按交集定義求解即可.【詳解】AB={2,3}故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接根據(jù)點(diǎn)到直線的距離公式即可求出【詳解】線段最短時(shí),與直線垂直,所以,的最小值即為點(diǎn)到直線的距離,則.故答案為:.14、【解析】根據(jù)直線和雙曲線的對(duì)稱性,結(jié)合圓的性質(zhì)、雙曲線的定義、三角形面積公式、雙曲線離心率公式進(jìn)行求解即可.【詳解】由直線與雙曲線的對(duì)稱性可知,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,在三角形中,,所以,是以為直徑的圓與雙曲線的交點(diǎn),不妨設(shè)在第一象限,,因?yàn)閳A是以為直徑,所以圓的半徑為,因?yàn)辄c(diǎn)在圓上,也在雙曲線上,所以有,聯(lián)立化簡可得,整理得,,所以,由所以,又因?yàn)?,?lián)立可得,,因?yàn)闉閳A的直徑,所以,即,,所以離心率.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用直線和雙曲線的對(duì)稱性,結(jié)合圓的性質(zhì)進(jìn)行求解是解題的關(guān)鍵.15、##【解析】由已知及等比數(shù)列的通項(xiàng)公式得到首項(xiàng)和公比,再利用前n項(xiàng)和公式計(jì)算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:16、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點(diǎn)睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)利用求出通項(xiàng)公式,根據(jù)已知求出公比即可得出的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求解.【小問1詳解】因?yàn)閿?shù)列的前項(xiàng)和為,且,當(dāng)時(shí),,當(dāng)時(shí),,滿足,所以,設(shè)等比數(shù)列的公比為,因?yàn)椋?,解得,所以;【小?詳解】因?yàn)椋瑒t,兩式相減得,所以.18、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫出的通項(xiàng)公式,從而表示出,利用裂項(xiàng)相消法求和.【詳解】選①:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以選②:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以選③:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以【點(diǎn)睛】數(shù)列求和的方法技巧(1)倒序相加:用于等差數(shù)列、與二項(xiàng)式系數(shù)、對(duì)稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯(cuò)位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個(gè)等差或等比數(shù)列的和或差數(shù)列的求和19、(1);(2)點(diǎn)P在定直線x=9上.理由見解析.【解析】(1)設(shè)點(diǎn),根據(jù)兩點(diǎn)坐標(biāo)距離公式和等比數(shù)列的等比中項(xiàng)的應(yīng)用列出方程,整理方程即可;(2)設(shè)直線MN方程為:,點(diǎn),聯(lián)立雙曲線方程消去x得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理寫出,利用兩點(diǎn)坐標(biāo)和直線的點(diǎn)斜式方程寫出直線PA、PB,聯(lián)立方程組,解方程組即可.【小問1詳解】設(shè)點(diǎn),則,又,所以,整理,得,即軌跡M的方程C為:;【小問2詳解】點(diǎn)P在定直線上.由(1)知,曲線C方程為:,直線MN過點(diǎn)D(1,0)若直線MN斜率不存在,則,得,不符合題意;設(shè)直線MN方程為:,點(diǎn),則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點(diǎn)P的坐標(biāo)為方程組的解,有,即,整理,得,解得,即點(diǎn)P在定直線上.20、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關(guān)系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關(guān)于的方程,進(jìn)而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設(shè)直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當(dāng)=(24m)2-4(3m2+4)×36>0時(shí),有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或21、(1);(2).【解析】(1)根據(jù)方程為焦點(diǎn)在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時(shí)的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時(shí),的取值范圍是,為真命題時(shí),,所以的取值范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年醫(yī)院財(cái)務(wù)預(yù)算管理制度(四篇)
- 2024年廠房買賣合同范本(二篇)
- 2024年熱敏記錄紙項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年土建施工員的主要職責(zé)表述范文(三篇)
- 2024年小學(xué)校長年終工作總結(jié)樣本(四篇)
- 2024年圖書館 管理制度模版(五篇)
- 2024年工程監(jiān)理聘用合同范本(二篇)
- 2024年小學(xué)音樂教研工作計(jì)劃樣本(三篇)
- 2024年工地各崗位安全生產(chǎn)責(zé)任制模版(三篇)
- 2024年家具訂購合同范文(三篇)
- (完整版)綜合管理信息系統(tǒng)QC成果報(bào)告
- 人教版2020-2021學(xué)年度第一學(xué)期一年級(jí)數(shù)學(xué)教學(xué)計(jì)劃及進(jìn)度表
- 法律顧問服務(wù)方案范文
- 華為通信設(shè)備最全圖標(biāo)庫.ppt
- 電鍍知識(shí)簡介PPT
- 職業(yè)價(jià)值觀研究綜述
- 智慧樹知到韓國語入門(延邊大學(xué))網(wǎng)課章節(jié)測(cè)試答案
- 各國標(biāo)準(zhǔn)螺紋基本尺寸對(duì)照表
- 論文范文淺談兒童自閉癥
- 城市公園管理養(yǎng)護(hù)中的難點(diǎn)、重點(diǎn)與建議
- 必看!設(shè)備管理必須要懂的一、二、三、四、五
評(píng)論
0/150
提交評(píng)論