2025屆山東省桓臺第一中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2025屆山東省桓臺第一中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2025屆山東省桓臺第一中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2025屆山東省桓臺第一中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2025屆山東省桓臺第一中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省桓臺第一中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知i是虛數(shù)單位,復數(shù)z=,則復數(shù)z的虛部為()A.i B.-iC.1 D.-12.均勻壓縮是物理學一種常見現(xiàn)象.在平面直角坐標系中曲線均勻壓縮,可用曲線上點的坐標來描述.設曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.3.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.54.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.5.已知x是上的一個隨機的實數(shù),則使x滿足的概率為()A. B.C. D.6.直線與直線平行,則兩直線間的距離為()A. B.C. D.7.若不等式在上有解,則的最小值是()A.0 B.-2C. D.8.已知平面,的法向量分別為,,且,則()A. B.C. D.9.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.10.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.11.已知等比數(shù)列滿足,,則數(shù)列前6項的和()A.510 B.126C.256 D.51212.已知直線平分圓C:,則最小值為()A.3 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,滿足約束條件,則的最小值為______.14.已知向量,,,若,則____________.15.已知函數(shù)是定義域上的單調遞增函數(shù),是的導數(shù)且為定義域上的單調遞減函數(shù),請寫出一個滿足條件的函數(shù)的解析式___________16.已知平面的法向量分別為,,若,則的值為___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.18.(12分)小張在2020年初向建行貸款50萬元先購房,銀行貸款的年利率為4%,要求從貸款開始到2030年要分10年還清,每年年底等額歸還且每年1次,每年至少要還多少錢呢(保留兩位小數(shù))?(提示:(1+4%)10≈1.48)19.(12分)中國共產(chǎn)黨建黨100周年華誕之際,某高校積極響應黨和國家的號召,通過“增強防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達對建黨100周年以來的豐功偉績的傳頌.教務處為了解學生對相關知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學校參與省里的此類比賽,你認為怎么選最合理,并說明理由20.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內部)以邊所在直線為旋轉軸旋轉得到的封閉圖形.(1)設,,求這個幾何體的表面積;(2)設G是弧DF的中點,設P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.21.(12分)已知定點,圓:,點Q為圓上動點,線段MQ的垂直平分線交NQ于點P,記P的軌跡為曲線C(1)求曲線C的方程;(2)過點M與N作平行直線和,分別交曲線C于點A,B和點D,E,求四邊形ABDE面積的最大值22.(10分)如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F(xiàn)為PA中點,,.四邊形PDCE為矩形,線段PC交DE于點N(1)求證:AC∥平面DEF;(2)求二面角A-BC-P的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先通過復數(shù)的除法運算求出z,進而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.2、C【解析】設單位圓上一點為,經(jīng)過題設變換后坐標為,則,代入圓的方程即可得曲線方程.【詳解】由題設,單位圓上一點坐標為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應坐標為,∴,則,故中,可得:.故選:C.3、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關于橢圓的離心率和雙曲線的離心率的關系式,即可求得的值.【詳解】設橢圓的長軸長為,雙曲線的實軸長為,令,不妨設則,解之得代入,可得整理得,即,也就是故選:C4、B【解析】根據(jù)給定條件建立空間直角坐標系,令,用表示出點E,F(xiàn)坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設,則,設,有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B5、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.6、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當時,,,此時,故兩直線平行時又之間的距離為,故選:B.7、D【解析】將題設條件轉化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設,則在上單調遞減,所以,所以,即,故選:D.【點睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉化為最值問題,也可以進行分情況討論.8、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D9、A【解析】根據(jù)題意,設圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A10、D【解析】由空間向量的坐標運算和空間向量平行的坐標表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.11、B【解析】設等比數(shù)列的公比為,由題設條件,求得,再結合等比數(shù)列的求和公式,即可求解.【詳解】設等比數(shù)列的公比為,因為,,可得,解得,所以數(shù)列前6項的和.故選:B.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的前項和公式的應用,其中解答中熟記等比數(shù)列的通項公式和求和公式,準確計算是解答的關鍵,著重考查推理與運算能力.12、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】作出約束條件對應的可行域,當目標函數(shù)過點時,取得最小值,求解即可.【詳解】作出約束條件對應的可行域,如下圖陰影部分,聯(lián)立,可得交點為,目標函數(shù)可化為,當目標函數(shù)過點時,取得最小值,即.故答案為:0.【點睛】本題考查線性規(guī)劃,考查數(shù)形結合的數(shù)學思想的應用,考查學生的計算求解能力,屬于基礎題.14、【解析】首先求出的坐標,再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因為向量,,,所以向量,因為,所以,即,解得故答案為:15、(答案不唯一)【解析】由題意可得0,結合在定義域上為減函數(shù)可取.【詳解】因為在定義域為單調增函數(shù)所以在定義域上0,又因為在定義域上為減函數(shù),且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).16、【解析】由平面互相垂直可知其對應的法向量也垂直,然后用空間向量垂直的坐標運算求解即可.【詳解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)線段上存在一點,當時,平面.【解析】(1)設點到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點作交于點,連接,可證明平面平面,從而可得出答案.【小問1詳解】由,,為中點,則由平面,平面,則又,且,則平面又,則平面,且都在平面內所以所以,取的中點,連接,則,所以,所以所以所以則設點到平面的距離為,則由即,即【小問2詳解】線段上是否存在一點,使平面.由(1)連接,則四邊形為平行四邊形,則過點作交于,則為中點,則為的中點,即又平面,則平面過點作交于點,連接,則,即又平面,所以平面又,所以平面平面又平面,所以平面所以線段上存在一點,當時,平面.18、每年至少要還6.17萬元.【解析】根據(jù)貸款總額和還款總額相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【詳解】50萬元10年產(chǎn)生本息和與每年還x萬元的本息和相等,故有購房款50萬元十年的本息和:50(1+4%)10,每年還x萬元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,從而有50(1+4%)10=,解得x≈6.17,即每年至少要還6.17萬元.19、(1);中位數(shù)所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解析】(1)根據(jù)頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據(jù)各組的頻率,即可分析中位數(shù)所在區(qū)間.(2)計算可得之間共有6人,滿足題意,分析即可得答案.【小問1詳解】,解得成績在區(qū)間上的頻率為,,所以中位數(shù)所在區(qū)間,【小問2詳解】選成績最好的同學去參賽,分數(shù)在之間共有人,所以選90分以上的人去參賽.(其它方案如果合理也可以給分)20、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩形和一個圓柱形側面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉化為同一個平面內的直線夾角即可【小問1詳解】上下兩個扇形的面積之和為:兩個矩形面積之和為:4側面圓弧段的面積為:故這個幾何體的表面積為:【小問2詳解】如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點,則由于上下兩個平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為21、(1)(2)6【解析】(1)由橢圓的定義求解(2)設直線方程后與橢圓方程聯(lián)立,由韋達定理表示弦長,將面積轉化為函數(shù)后求求解【小問1詳解】由題意可得,所以動點P的軌跡是以M,N為焦點,長軸長為4的橢圓,即曲線C的方程為:;【小問2詳解】由題意可設的方程為,聯(lián)立方程得,設,,則由根與系數(shù)關系有,所以,根據(jù)橢圓的對稱性可得,與的距離即為點M到直線的距離,為,所以四邊形ABDE面積為,令得,由對勾函數(shù)性質可知:當且僅當,即時,四邊形ABDE面積取得最大值為6.22、(1)證明見解析;(2).【解析】(1)記PC交DE于點N,然后證明FN∥AC,進而通過線面平行的判定定理證明問題;(2)建立空間直角坐標系,進而通過空間向量夾角公式求得答案.【小問1詳解】因為四邊形PDCE為矩形,線段PC交DE于點N,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論