江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第1頁
江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第2頁
江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第3頁
江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第4頁
江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.2.五行學說是中華民族創(chuàng)造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.3.復數(shù),且z在復平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)m的值可以為()A.2 B.C. D.04.已知等比數(shù)列的公比為正數(shù),且,,則()A.4 B.2C.1 D.5.已知函數(shù)有兩個極值點m,n,且,則的最大值為()A. B.C. D.6.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.7.若圓與圓相切,則的值為()A. B.C.或 D.或8.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定9.已知實數(shù)x,y滿足,則的最大值為()A. B.C.2 D.110.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離11.若數(shù)列的前項和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對12.已知直線與直線垂直,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________14.如圖,在正方體中,、分別是、的中點,則異面直線與所成角的大小是____________.15.已知,為橢圓C的焦點,點P在橢圓C上,,則的面積為___________.16.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列前項和為,且滿足,求的表達式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.18.(12分)已知是拋物線上的焦點,是拋物線上的一個動點,若動點滿足,則的軌跡方程.19.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.20.(12分)如圖①,直角梯形中,,,點,分別在,上,,,將四邊形沿折起,使得點,分別到達點,的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知橢圓的標準方程為:,若右焦點為且離心率為(1)求橢圓的方程;(2)設(shè),是上的兩點,直線與曲線相切且,,三點共線,求線段的長22.(10分)某高中招聘教師,首先要對應(yīng)聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應(yīng)聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應(yīng)聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應(yīng)聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應(yīng)聘者的面試成績X的分布列及數(shù)學期望

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】建立空間直角坐標系,求得平面的一個法向量為,易知平面的一個法向量為,由求解.【詳解】建立如圖所示空間直角坐標系:則,所以,設(shè)平面的一個法向量為,則,即,令,則,易知平面的一個法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A2、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C3、B【解析】根據(jù)復數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當z在復平面內(nèi)對應(yīng)的點在第二象限時,則有,可得,結(jié)合選項可知,B正確故選:B4、D【解析】設(shè)等比數(shù)列的公比為(),則由已知條件列方程組可求出【詳解】設(shè)等比數(shù)列的公比為(),由題意得,且,即,,因為,所以,,故選:D5、C【解析】對求導得,得到m,n是兩個根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導數(shù)求單調(diào)性,進而得最值.【詳解】由得:m,n是兩個根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C6、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.7、C【解析】分類討論:當兩圓外切時,圓心距等于半徑之和;當兩圓內(nèi)切時,圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當兩圓外切時,有,此時.②當兩圓內(nèi)切時,有,此時.綜上,當時兩圓外切;當時兩圓內(nèi)切.故選:C【點睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時注意分類討論,屬于基礎(chǔ)題.8、C【解析】利用向量法判斷平面與平面的位置關(guān)系.【詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C9、A【解析】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當直線過直線的交點時取最大值,即故選:10、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點:直線與圓的位置關(guān)系11、D【解析】利用數(shù)列通項與前n項和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當時,,當時,,當時,,所以是等差數(shù)列;當時,為非等差數(shù)列,非等比數(shù)列’當時,,所以是等比數(shù)列,故選:D12、D【解析】根據(jù)互相垂直兩直線的斜率關(guān)系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.##2.4【解析】利用直線與平行,結(jié)合切線的性質(zhì)求出切線的方程,即可確定定點坐標,再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設(shè)直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.14、【解析】分別以所在直線為軸,建立空間直角坐標系,設(shè),則,,即異面直線A1M與DN所成角的大小是考點:異面直線所成的角15、##【解析】設(shè),然后根據(jù)橢圓的定義和余弦定理列方程組可求出,再由三角形的面積公式可求得結(jié)果【詳解】由,得,則,設(shè),則,在中,,由余弦定理得,,所以,所以,所以,所以,故答案為:16、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項相消法可得出的表達式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當n=1時,,當時,.因為滿足,所以.【小問3詳解】解:,、、這三項經(jīng)適當排序后能構(gòu)成等差數(shù)列,①若,則,所以,,又,所以,,則;②若,則,則,左邊為偶數(shù),右邊為奇數(shù),所以,②不成立;③若,同②可知③也不成立綜合①②③得,18、【解析】由拋物線的方程可得到焦點坐標,設(shè),寫出向量的坐標,由向量間的關(guān)系得到,將點代入物線即可得到軌跡方程.【詳解】由拋物線可得:設(shè)①在上,將①代入可得:,即.【點睛】求軌跡方程,一般是求誰設(shè)誰的坐標然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標進行運算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要仔細.19、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當k=0時,S最小,最小值為.20、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標系,分別求得平面的一個法向量和平面的一個法向量,設(shè)二面角的大小為,由求解.【小問1詳解】解:因為,,,所以,,又,所以是等腰直角三角形,即,所以.由平面幾何知識易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小問2詳解】由(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向,建立如圖所示的空間直角坐標系,設(shè),則,,,,F(xiàn)(1,0,0),則,,設(shè)平面的一個法向量為,由,得,取,則.由,,,得平面,所以平面的一個法向量為,設(shè)二面角的大小為,則,由圖可知二面角為鈍二面角,所以二面角的余弦值為.21、(1);(2).【解析】(1)根據(jù)橢圓的焦點、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設(shè)直線方程聯(lián)立橢圓方程并應(yīng)用韋達定理求弦長即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當直線的斜率不存在時,直線,不合題意:當直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論