2025屆上海市靜安區(qū)上戲附中高二上數(shù)學期末達標檢測模擬試題含解析_第1頁
2025屆上海市靜安區(qū)上戲附中高二上數(shù)學期末達標檢測模擬試題含解析_第2頁
2025屆上海市靜安區(qū)上戲附中高二上數(shù)學期末達標檢測模擬試題含解析_第3頁
2025屆上海市靜安區(qū)上戲附中高二上數(shù)學期末達標檢測模擬試題含解析_第4頁
2025屆上海市靜安區(qū)上戲附中高二上數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市靜安區(qū)上戲附中高二上數(shù)學期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.43.某中學高一年級有200名學生,高二年級有260名學生,高三年級有340名學生,為了了解該校高中學生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個容量為40的樣本,則高二年級抽取的人數(shù)為()A.10 B.13C.17 D.264.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則=()A. B.C. D.5.設村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.6.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.47.已知函數(shù)在處的導數(shù)為,則()A. B.C. D.8.橢圓的焦點坐標為()A., B.,C., D.,9.等比數(shù)列的各項均為正數(shù),且,則=()A.8 B.16C.32 D.6410.已知點,,直線與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.11.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.212.設函數(shù)在定義域內可導,的圖象如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列中,,則=_________.14.在數(shù)列中,,且,則_______.15.參加數(shù)學興趣小組的小何同學在打籃球時,發(fā)現(xiàn)當籃球放在地面上時,籃球的斜上方燈泡照過來的光線使得籃球在地面上留下的影子有點像數(shù)學課堂上學過的橢圓,但他自己還是不太確定這個想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問題的,而且通過學習,他還確定地面和籃球的接觸點(切點)就是影子橢圓的焦點.他在家里做了個探究實驗:如圖所示,桌面上有一個籃球,若籃球的半徑為個單位長度,在球的右上方有一個燈泡(當成質點),燈泡與桌面的距離為個單位長度,燈泡垂直照射在平面的點為,影子橢圓的右頂點到點的距離為個單位長度,則這個影子橢圓的離心率______.16.已知數(shù)列前n項和為,且.(1)證明:是等比數(shù)列,并求的通項公式;(2)在①;②;③這三個條件中任選一個補充在下面橫線上,并加以解答.已知數(shù)列滿足___________,求的前n項和.注:如果選擇多個方案分別解答,按第一個方案解答計分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}的前n項和為Sn,an>0,a1<2,6Sn=(an+1)(an+2).(1)求證:數(shù)列{an}是等差數(shù)列;(2)令,數(shù)列{bn}的前n項和為Tn,求證:.18.(12分)在中,是的中點,,現(xiàn)將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.19.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.20.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.21.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.22.(10分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出不等式的等價形式,結合充分條件和必要條件的定義進行判斷即可【詳解】由得或,由得,因為或推不出,但能推出或成立,所以“”是“”的必要不充分條件,故選:B2、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B3、B【解析】計算出抽樣比可得答案.【詳解】該校高中學生共有名,所以高二年級抽取的人數(shù)名.故選:B.4、A【解析】根據(jù)空間向量的加減法運算法則,直接寫出向量的表達式,即可得答案.【詳解】=,故選:A.5、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B6、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B7、C【解析】利用導數(shù)的定義即可求出【詳解】故選:C8、A【解析】由題方程化為橢圓的標準方程求出c,則橢圓的焦點坐標可求【詳解】由題得方程可化為,所以所以焦點為故選:A.9、B【解析】由等比數(shù)列的下標和性質即可求得答案.【詳解】由題意,,所以.故選:B.10、B【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數(shù)的取值范圍是或,故選:B11、A【解析】由雙曲線方程,根據(jù)其漸近線方程有,求參數(shù)值即可.【詳解】由漸近線,結合雙曲線方程,∴,可得.故選:A.12、D【解析】根據(jù)的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數(shù)圖象的識別,此類問題應根據(jù)原函數(shù)的單調性來考慮導函數(shù)的符號與零點情況,本題屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由等差數(shù)列的通項公式求出公差,進而求出.【詳解】設該等差數(shù)列的公差為,則,所以.故答案為:4.14、##【解析】根據(jù)數(shù)列的遞推公式,發(fā)現(xiàn)規(guī)律,即數(shù)列為周期數(shù)列,然后求出即可【詳解】根據(jù)題意可得:,,,故數(shù)列為周期數(shù)列可得:故答案為:15、【解析】建立平面直角坐標系,解得圖中N、Q的橫坐標,列方程組即可求得橢圓的a、c,進而求得橢圓的離心率.【詳解】以A為原點建立平面直角坐標系,則,,直線PR的方程為設,由到直線PR的距離為1,得,解之得或(舍)則,又設直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【點睛】數(shù)形結合是數(shù)學解題中常用的思想方法,數(shù)形結合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質;另外,由于使用了數(shù)形結合的方法,很多問題便迎刃而解,且解法簡捷。16、(1)證明見解析,;(2)答案見解析.【解析】(1)利用得出的遞推關系,變形后可證明是等比數(shù)列,由等比數(shù)列通項公式得,然后再除以得到新數(shù)列是等差數(shù)列,從而可求得;(2)選①,直接求出,用錯位相減法求和;選②,求出,用分組(并項)求和法求和;選③,求出,用裂項相消法求和【詳解】解:(1)當時,因為,所以,兩式相減得,.所以.當時,因為,所以,又,故,于是,所以是以4為首項2為公比的等比數(shù)列.所以,兩邊除以得,.又,所以是以2為首項1為公差的等差數(shù)列.所以,即.(2)若選①:,即.因為,所以.兩式相減得,所以.若選②:,即.所以.若選③:,即.所以.【點睛】本題考查求等差數(shù)列、等比數(shù)列的通項公式,錯位相減法求和.數(shù)列求和的常用方法:設數(shù)列是等差數(shù)列,是等比數(shù)列,(1)公式法:等差數(shù)列或等比數(shù)列的求和直接應用公式求和;(2)錯位相減法:數(shù)列的前項和應用錯位相減法;(3)裂項相消法;數(shù)列(為常數(shù),)的前項和用裂項相消法;(4)分組(并項)求和法:數(shù)列用分組求和法,如果數(shù)列中的項出現(xiàn)正負相間等特征時可能用并項求和法;(5)倒序相加法:滿足(為常數(shù))的數(shù)列,需用倒序相加法求和三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)數(shù)列通項與前項和的關系,構造新等式,作差整理得到,進而求解結論;(2)求出數(shù)列{an}的通項公式,再代入裂項求和即可.【小問1詳解】證明:因為,所以當時,,兩式相減,得到,整理得,又因為an>0,所以,所以數(shù)列{an}是等差數(shù)列,公差為3;【小問2詳解】證明:當n=1時,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因為a1<2,所以a1=1,由(1)可知公差d=3,所以an=a1+(n﹣1)d=1+(n﹣1)×3=3n﹣2,所以,所以=.18、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因為點是的中點,在中,由(1)易知,.過點作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.19、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標式坐標化可得與無關,可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設存在滿足條件的點,直線,有,,設,有,,,,當時,為定值,所以.20、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結果;(2)根據(jù)題意,將方程轉化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調遞減,在上單調遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即21、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論