版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省曲靖市宜良縣第六中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.2.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.194.若,則“”的一個充分不必要條件是A. B.C.且 D.或5.函數(shù)在的圖像大致為A. B. C. D.6.函數(shù)f(x)=lnA. B. C. D.7.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.28.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.9.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.10.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.11.函數(shù)在上的大致圖象是()A. B.C. D.12.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,其中,.且,則集合中所有元素的和為_________.14.某校高三年級共有名學(xué)生參加了數(shù)學(xué)測驗(滿分分),已知這名學(xué)生的數(shù)學(xué)成績均不低于分,將這名學(xué)生的數(shù)學(xué)成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學(xué)生中數(shù)學(xué)成績在分以下的人數(shù)為;③這名學(xué)生數(shù)學(xué)成績的中位數(shù)約為;④這名學(xué)生數(shù)學(xué)成績的平均數(shù)為.15.一個四面體的頂點在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.16.已知復(fù)數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標(biāo)原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點且,,,.求證:平面平面以;求二面角的大小.19.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.20.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側(cè)面為正方形,求直線與平面所成角的正弦值.21.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時,,求的取值范圍.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.2、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,位于第二象限.故選:B【點睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.3、B【解析】
計算,故,解得答案.【詳解】當(dāng)時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學(xué)生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.4、C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.5、B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.【點睛】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識、基本計算能力的考查.6、C【解析】因為fx=lnx2-4x+4x-23=7、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.8、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實際應(yīng)用,考查學(xué)生的運算求解能力、創(chuàng)新能力.9、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.10、C【解析】
直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,考查計算能力.11、D【解析】
討論的取值范圍,然后對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時,,故切線的斜率變小,當(dāng)時,,故切線的斜率變大,可排除A、B;當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時,,故切線的斜率變大,當(dāng)時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.12、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.二、填空題:本題共4小題,每小題5分,共20分。13、2889【解析】
先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時,集合中最小數(shù);當(dāng)時,得到集合中最大的數(shù);故答案為:2889【點睛】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.14、②③【解析】
由頻率分布直方圖可知,解得,故①不正確;這名學(xué)生中數(shù)學(xué)成績在分以下的人數(shù)為,故②正確;設(shè)這名學(xué)生數(shù)學(xué)成績的中位數(shù)為,則,解得,故③正確;④這名學(xué)生數(shù)學(xué)成績的平均數(shù)為,故④不正確.綜上,說法正確的序號是②③.15、【解析】
將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標(biāo)可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎(chǔ)題.16、【解析】
利用復(fù)數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復(fù)數(shù)為純虛數(shù),解得.故答案為:.【點睛】本題主要考查了根據(jù)復(fù)數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)拋物線的焦點求得橢圓的焦點,由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點的縱坐標(biāo),由此求得的面積.(2)求得兩點的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因為拋物線的焦點坐標(biāo)為,所以橢圓的右焦點的坐標(biāo)為,所以,因為橢圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因為點在橢圓上,所以,所以.【點睛】本小題主要考查拋物線的焦點,橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識,考查推理論證能力、運算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.18、證明見解析;.【解析】
推導(dǎo)出,,從而平面,由此證明平面平面以;以為原點,建立空間直角坐標(biāo)系,利用法向量求出二面角的大小.【詳解】解:,,為的中點,四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點,.平面平面,且平面平面,平面.如圖,以為原點建立空間直角坐標(biāo)系,則平面的一個法向量為,,,,,設(shè),則,,,,,在平面中,,,設(shè)平面的法向量為,則,即,平面的一個法向量為,,由圖知二面角為銳角,所以所求二面角大小為.【點睛】本題考查面面垂直的證明,考查二面角的大小的求法,考查了空間向量的應(yīng)用,屬于中檔題.19、(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標(biāo)系,設(shè),計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標(biāo)原點,為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運算的能力,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標(biāo)系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線的垂線,以為原點,以,,為所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設(shè)平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點睛】本題主要考查了線面垂直的判定與性質(zhì),考查空間向量與空間角的計算,屬于中檔題.21、(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時,恒成立,②當(dāng)時,轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲門店運營 課程設(shè)計
- 秧歌特色課程設(shè)計
- 連接座全套課程設(shè)計
- 龍蝦米課程設(shè)計
- 益智桌面游戲課程設(shè)計
- 長春大學(xué)英語課程設(shè)計
- 船舶動力課程設(shè)計38米
- 英語教資課程設(shè)計導(dǎo)入
- 虎鉗三維建模課程設(shè)計
- 汽車課程設(shè)計任務(wù)書
- 創(chuàng)新者的逆襲3:新質(zhì)生產(chǎn)力的十八堂案例課-記錄
- 2024年河南省公務(wù)員考試《行測》真題及答案解析
- 2022-2024北京初三二模英語匯編:話題作文
- 《阻燃材料與技術(shù)》-顏龍 習(xí)題解答
- 人教版八年級英語上冊Unit1-10完形填空閱讀理解專項訓(xùn)練
- 2024年湖北省武漢市中考英語真題(含解析)
- GB/T 44561-2024石油天然氣工業(yè)常規(guī)陸上接收站液化天然氣裝卸臂的設(shè)計與測試
- 《城市綠地設(shè)計規(guī)范》2016-20210810154931
- 網(wǎng)球場經(jīng)營方案
- 2024年公司保密工作制度(四篇)
- 重慶市康德卷2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析
評論
0/150
提交評論