版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省莒縣2025屆高三數學第一學期期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③2.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.3.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件4.已知復數,(為虛數單位),若為純虛數,則()A. B.2 C. D.5.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸6.若復數是純虛數,則實數的值為()A.或 B. C. D.或7.的展開式中,含項的系數為()A. B. C. D.8.已知定點都在平面內,定點是內異于的動點,且,那么動點在平面內的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點9.已知實數、滿足約束條件,則的最大值為()A. B. C. D.10.設分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.11.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.12.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數()在區(qū)間上的值小于0恒成立,則的取值范圍是________.14.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB15.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.16.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數為實數)的圖像在點處的切線方程為.(1)求實數的值及函數的單調區(qū)間;(2)設函數,證明時,.18.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.19.(12分)已知函數,,使得對任意兩個不等的正實數,都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.20.(12分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.21.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.22.(10分)已知函數,記不等式的解集為.(1)求;(2)設,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.2、D【解析】
由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯立①②得,聯立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.3、C【解析】
根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.4、C【解析】
把代入,利用復數代數形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數,∴,解得.故選C.【點睛】本題考查復數代數形式的除法運算,考查復數的基本概念,是基礎題.5、A【解析】
根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.6、C【解析】試題分析:因為復數是純虛數,所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數7、B【解析】
在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.8、A【解析】
根據題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質,軌跡問題,屬于中檔題.9、C【解析】
作出不等式組表示的平面區(qū)域,作出目標函數對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數經過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規(guī)劃等基礎知識;考查運算求解能力,數形結合思想,應用意識,屬于中檔題.10、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數形結合的思想,屬于基礎題.11、D【解析】
整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.12、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先根據的取值范圍,求得的取值范圍,由此求得函數的值域,結合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數值域的求法,考查三角函數值恒小于零的問題的求解,考查化歸與轉化的數學思想方法,屬于中檔題.14、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統一用AC,15、2【解析】
由題得,再根據求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎題.16、20【解析】
由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學生空間想象能力以及數學運算能力,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);函數的單調遞減區(qū)間為,單調遞增區(qū)間為;(2)詳見解析.【解析】
試題分析:(1)由題得,根據曲線在點處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數的單調區(qū)間;(2)由(1)得根據由,整理得,設,轉化為函數的最值,即可作出證明.試題解析:(1)由題得,函數的定義域為,,因為曲線在點處的切線方程為,所以解得.令,得,當時,,在區(qū)間內單調遞減;當時,,在區(qū)間內單調遞增.所以函數的單調遞減區(qū)間為,單調遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設,則要證,等價于證:.令,則,∴在區(qū)間內單調遞增,,即,故.18、(1)極小值為,極大值為.(2)【解析】
(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.【點睛】本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.19、(1);(2)證明見解析.【解析】
(1)根據題意,在上單調遞減,求導得,分類討論的單調性,結合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構造函數,根據導數研究單調性,求出,即可證出結論.【詳解】(1)根據題意,對任意兩個不等的正實數,都有恒成立.則在上單調遞減,因為,當時,在內單調遞減.,當時,由,有,此時,當時,單調遞減,當時,單調遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構造函數.則,所以函數在上單調遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導數研究函數的單調性求函數的解析式、以及利用構造函數法證明不等式,考查轉化思想、解題分析能力和計算能力.20、見解析【解析】
(1)當時,函數,其定義域為,則,設,,易知函數在上單調遞增,且,所以當時,,即;當時,,即,所以函數在上單調遞減,在上單調遞增,所以函數在處取得極小值,為,無極大值.(2)由題可得函數的定義域為,,設,,顯然函數在上單調遞增,當時,,,所以函數在內有一個零點,所以函數有且僅有一個零點;當時,,,所以函數有且僅有一個零點,所以函數有且僅有一個零點;當時,,,因為,所以,,又,所以函數在內有一個零點,所以函數有且僅有一個零點.綜上,函數有且僅有一個零點.21、證明見解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度山西省高校教師資格證之高等教育法規(guī)自我檢測試卷A卷附答案
- 2023年劇裝道具相關工藝美術品資金籌措計劃書
- 2019年度城市活力研究報告
- 生意轉讓合同協議
- 2024年個人租車業(yè)務協議范本
- 智慧體育館信息化管理平臺建設方案
- 二手房購買預定金協議范本2024
- 2024年商業(yè)股權轉讓協議格式
- 2024人力培訓服務外包代理協議
- 文書模板-《惠農信息員實習合同》
- 2024廣西專業(yè)技術人員繼續(xù)教育公需科目參考答案
- 工程變更通知單ECN模板-20220213
- 《DB32T 4226-2022連續(xù)腎臟替代治療裝置臨床使用安全管理與質量控制規(guī)范》
- Q GDW 10115-2022 110kV~1000kV架空輸電線路施工及驗收規(guī)范
- 資格考試合格人員登記表
- 2024中國新型儲能行業(yè)發(fā)展白皮書-儲能領跑者聯盟
- 人民警察紀律條令試卷含答案
- 《水電工程環(huán)境影響評價規(guī)范》(NB-T 10347-2019)
- 新時代勞動教育教程(中職版勞動教育)全套教學課件
- 社會經濟熱點-貧富差距專題
- 供配電工程及配套設施 投標方案(技術方案)
評論
0/150
提交評論