2024屆重慶市萬州龍駒中學(xué)普通高考模擬測(cè)試(一)數(shù)學(xué)試題_第1頁(yè)
2024屆重慶市萬州龍駒中學(xué)普通高考模擬測(cè)試(一)數(shù)學(xué)試題_第2頁(yè)
2024屆重慶市萬州龍駒中學(xué)普通高考模擬測(cè)試(一)數(shù)學(xué)試題_第3頁(yè)
2024屆重慶市萬州龍駒中學(xué)普通高考模擬測(cè)試(一)數(shù)學(xué)試題_第4頁(yè)
2024屆重慶市萬州龍駒中學(xué)普通高考模擬測(cè)試(一)數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆重慶市萬州龍駒中學(xué)普通高考模擬測(cè)試(一)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.1777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.2.若集合,則=()A. B. C. D.3.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線與異面B.過只有唯一平面與平行C.過點(diǎn)只能作唯一平面與垂直D.過一定能作一平面與垂直4.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.25.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-26.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知函數(shù)滿足:當(dāng)時(shí),,且對(duì)任意,都有,則()A.0 B.1 C.-1 D.8.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.9.設(shè)集合,,則().A. B.C. D.10.我國(guó)宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少?gòu)V求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長(zhǎng),,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或11.若雙曲線:繞其對(duì)稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或12.函數(shù)在上的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值是______.14.已知集合,,則_________.15.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.16.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時(shí)橢圓的方程是____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動(dòng)了我國(guó)經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng)計(jì),在2018年這一年內(nèi)從市到市乘坐高鐵或飛機(jī)出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個(gè),求這個(gè)出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)?并說明理由.18.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點(diǎn),為棱上的一點(diǎn).(1)證明:面面;(2)當(dāng)為中點(diǎn)時(shí),求二面角余弦值.19.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.20.(12分)某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗.晉級(jí)成功晉級(jí)失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02421.(12分)電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計(jì)男女1055合計(jì)(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63522.(10分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若存在滿足不等式,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.2、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.4、A【解析】

求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】

根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.6、A【解析】

利用復(fù)數(shù)除法運(yùn)算化簡(jiǎn),由此求得對(duì)應(yīng)點(diǎn)所在象限.【詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.7、C【解析】

由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】

根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,即故答案為:B.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.9、D【解析】

根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【詳解】根據(jù)題意,則故選:D【點(diǎn)睛】此題考查集合的交并集運(yùn)算,屬于簡(jiǎn)單題目,10、C【解析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.11、C【解析】

由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點(diǎn)既可在軸,又可在軸上,所以或,或.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.12、D【解析】

討論的取值范圍,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線的斜率變小,當(dāng)時(shí),,故切線的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線的斜率變大,當(dāng)時(shí),,故切線的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識(shí)別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故的最小值為8,故答案為:8.【點(diǎn)睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.14、【解析】

根據(jù)交集的定義即可寫出答案。【詳解】,,故填【點(diǎn)睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。15、【解析】

根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對(duì)稱軸與求解的關(guān)系分析最值求解即可.【詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶?duì)稱軸為.(i)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.此時(shí),解得.(ii)當(dāng)時(shí),在上單調(diào)遞減.此時(shí),解得舍去.綜上,橢圓方程為.故答案為:【點(diǎn)睛】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對(duì)稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)分布列見解析,數(shù)學(xué)期望(3)建議甲乘坐高鐵從市到市.見解析【解析】

(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計(jì)算公式計(jì)算得出;(2)依題意可知服從二項(xiàng)分布,先計(jì)算出隨機(jī)選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學(xué)期望;(3)可以計(jì)算滿意度均值來比較乘坐高鐵還是飛機(jī).【詳解】(1)設(shè)事件:“在樣本中任取個(gè),這個(gè)出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個(gè),這個(gè)出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因?yàn)樵?018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,此人為老年人概率是,所以,,,所以隨機(jī)變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,

參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機(jī)的人滿意度均值為:因?yàn)?,所以建議甲乘坐高鐵從市到市.【點(diǎn)睛】本題主要考查了分層抽樣的應(yīng)用、古典概型的概率計(jì)算、以及離散型隨機(jī)變量的分布列和期望的計(jì)算,解題關(guān)鍵是對(duì)題意的理解,概率類型的判斷,屬于中檔題.18、(1)證明見解析;(2).【解析】

(1)要證明面面,只需證明面即可;(2)以為坐標(biāo)原點(diǎn),以,,分別為,,軸建系,分別計(jì)算出面法向量,面的法向量,再利用公式計(jì)算即可.【詳解】證明:(1)因?yàn)榈酌鏋檎叫?,所以又因?yàn)?,,滿足,所以又,面,面,,所以面.又因?yàn)槊妫?,面?(2)由(1)知,,兩兩垂直,以為坐標(biāo)原點(diǎn),以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設(shè)面法向量為,則由得,令得,,即;同理,設(shè)面的法向量為,則由得,令得,,即,所以,設(shè)二面角的大小為,則所以二面角余弦值為.【點(diǎn)睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學(xué)生的運(yùn)算求解能力,此類問題關(guān)鍵是準(zhǔn)確寫出點(diǎn)的坐標(biāo),是一道中檔題.19、(1)(2)【解析】

(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).20、(1);(2)列聯(lián)表見解析,有超過的把握認(rèn)為“晉級(jí)成功”與性別有關(guān);(3)分布列見解析,=3【解析】

(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級(jí)成功的頻率,計(jì)算晉級(jí)成功的人數(shù),填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;(3)由頻率分布直方圖知晉級(jí)失敗的頻率,將頻率視為概率,知隨機(jī)變量服從二項(xiàng)分布,計(jì)算對(duì)應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望.【詳解】解:(1)由頻率分布直方圖各小長(zhǎng)方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級(jí)成功的頻率為,所以晉級(jí)成功的人數(shù)為(人),填表如下:晉級(jí)成功晉級(jí)失敗合計(jì)男163450女941

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論