版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年天津一中高三下學期十月階段性考試試題數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的內(nèi)角滿足,則的值為()A. B. C. D.2.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.3.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.4.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.5.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.6.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-17.已知函數(shù)在上都存在導函數(shù),對于任意的實數(shù)都有,當時,,若,則實數(shù)的取值范圍是()A. B. C. D.8.雙曲線x2a2A.y=±2x B.y=±3x9.已知,若則實數(shù)的取值范圍是()A. B. C. D.10.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.11.復數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.復數(shù)的虛部為()A.—1 B.—3 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項和,已知,,則_______.14.設函數(shù),若在上的最大值為,則________.15.的展開式中的系數(shù)為____.16.若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)求證:(,且).18.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.19.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.20.(12分)己知的內(nèi)角的對邊分別為.設(1)求的值;(2)若,且,求的值.21.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.22.(10分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當時,.(1)求橢圓的標準方程;(2)若橢圓上點與點關于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由,得到,得出,再結合三角函數(shù)的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.2.D【解析】
由題意可得,根據(jù),即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.3.C【解析】
由題知:該程序框圖是利用循環(huán)結構計算并輸出變量的值,計算程序框圖的運行結果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環(huán)結構,屬于簡單題.4.D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.5.D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.6.D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.7.B【解析】
先構造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.8.A【解析】分析:根據(jù)離心率得a,c關系,進而得a,b關系,再根據(jù)雙曲線方程求漸近線方程,得結果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a29.C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,10.C【解析】
對此分段函數(shù)的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應的等差數(shù)列和等比數(shù)列,最后分組求和,要求學生對數(shù)列和函數(shù)的熟悉程度高,為中檔題11.C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.12.B【解析】
對復數(shù)進行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復數(shù)的計算,虛部的概念,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設等比數(shù)列的公比為,將已知條件等式轉化為關系式,求解即可.【詳解】設等比數(shù)列的公比為,,.故答案為:.【點睛】本題考查等比數(shù)列通項的基本量運算,屬于基礎題.14.【解析】
求出函數(shù)的導數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域為,在上單調(diào)遞增,故在上的最大值為故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎題.15.28【解析】
將已知式轉化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數(shù),關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.16.【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件。【詳解】由題意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)見解析【解析】
(1)分別求得與的導函數(shù),由導函數(shù)與單調(diào)性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數(shù)與函數(shù)單調(diào)性關系,放縮法在證明不等式中的應用,屬于難題.18.(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調(diào)查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.19.(1).(2).【解析】
(1)先根據(jù)空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據(jù)圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20.(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.21.(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大??;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關系,考查了運算能力.22.(1);(2)(?。?;(ⅱ)證明見解析.【解析】
(1)由,解方程組即可得到答案;(2)(ⅰ)設,,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設直線斜率為,直線方程為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地震分析服務行業(yè)市場調(diào)研分析報告
- 企業(yè)財務透明度的提升措施計劃
- 人事助理勞動合同三篇
- 月項目管理與執(zhí)行計劃
- 景氣周期下的財務調(diào)控計劃
- 促進幼兒全面發(fā)展的課程設計計劃
- 探索海洋風電的未來-技術進步與應用前景剖析
- 開展年度回顧總結提升規(guī)劃清晰度計劃
- 智能未來:AI引領科技創(chuàng)新-探索AI在科技行業(yè)的影響與價值
- 大數(shù)據(jù)智能類產(chǎn)業(yè)學院產(chǎn)教融合實施路徑探討
- 建筑材料采購投標方案(技術標)
- 職業(yè)技能考評員培訓
- 市場監(jiān)管 食品安全 宣傳方案
- 當前臺海局勢分析課件
- 戰(zhàn)爭中的經(jīng)濟學家
- JavaScript-基礎階段測筆試試題(含答案)
- 成長賽道-模板參考
- 新生兒家庭參與式護理課件
- 2024中國傳媒產(chǎn)業(yè)
- 潛式排污泵安裝與調(diào)試方案
- 施工現(xiàn)場臨時用電安全技術規(guī)范JGJ46-2005
評論
0/150
提交評論