版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市大興區(qū)2023-2024學年高考數學試題押題預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.62.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.3.設,則()A. B. C. D.4.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.5.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或96.已知復數是正實數,則實數的值為()A. B. C. D.7.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個8.若的展開式中的常數項為-12,則實數的值為()A.-2 B.-3 C.2 D.39.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.10.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.11.已知函數,,,,則,,的大小關系為()A. B. C. D.12.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知全集為R,集合,則___________.14.設滿足約束條件,則的取值范圍是______.15.已知數列的各項均為正數,滿足,.,若是等比數列,數列的通項公式_______.16.已知向量,,且,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區(qū)間;(2)已知,若,,,求的面積.18.(12分)為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;(2)根據列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;(3)以該小區(qū)的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82819.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.20.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.21.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.22.(10分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的極小值;(3)求函數的零點個數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.2、B【解析】
設過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.3、C【解析】試題分析:,.故C正確.考點:復合函數求值.4、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.5、C【解析】
由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.6、C【解析】
將復數化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數,所以且,解得.故選:C【點睛】本題考查復數的基本定義,屬基礎題.7、D【解析】
運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.8、C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.9、A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關鍵的是找到的方程或不等式,本題屬于容易題.10、C【解析】
首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.11、B【解析】
可判斷函數在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B【點睛】本題主要考查了函數單調性的判定,指數函數與對數函數的性質,利用單調性比大小等知識,考查了學生的運算求解能力.12、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.14、【解析】
作出可行域,將目標函數整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當時,z=0;當時將目標函數整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點睛】本題考查分式型目標函數的線性規(guī)劃問題,屬于簡單題.15、【解析】
利用遞推關系,等比數列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數列,所以數列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數列,所以,故答案為:.【點睛】該題考查的是有關數列的問題,涉及到的知識點有根據遞推公式求數列的通項公式,屬于簡單題目.16、【解析】
根據垂直向量的坐標表示可得出關于實數的等式,即可求得實數的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查利用向量垂直求參數,涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數的周期和單調區(qū)間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.18、(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將列聯(lián)表中的數據代入公式計算得所以有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”.(3)以頻率作為概率,隨機選擇1家個體經營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計算可得的分布列為:0123【點睛】本題考查了運用數學模型解答實際生活問題,運用合理的抽樣方法,計算以及數據的分布列和數學期望,需要正確運用公式進行求解,本題屬于??碱}型,需要掌握解題方法.19、.【解析】
根據特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.20、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數關系式;在和中,利用余弦定理,可得關于x的函數關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關于x的函數關系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關于x的函數關系式為,.法2:因為在中,,所以.所以,直道長度關于x的函數關系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關于x的函數關系式為,.(2)由(1)得,兩條直道的長度之和為(當且僅當即時取“”).故當百米時,兩條直道的長度之和取得最小值百米.【點睛】本題考查了余弦定理和基本不等式,第一問也可以利用三角形中的向量關系進行求解,屬于中檔題.21、(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.22、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 口腔科模擬題+參考答案
- 煤礦完工合同范例
- 合同范例內容
- 果場合伙合同范例
- 大棚西瓜種植收購合同范例
- 校園投票贊助合同范例
- 家庭勞務雇傭合同范例
- 2025年江蘇貨運駕駛從業(yè)資格證考試題庫
- 合同范例紙質
- 《第九課 比比誰打字快:詞組輸入》教學實錄-2023-2024學年新世紀版(2023)三年級上冊
- 《航空工程材料》教學大綱
- 物聯(lián)網綜合測試題和答案全
- 九年級化學上冊期末考試卷及參考答案
- 壓瘡病例分享
- MOOC 制造技術基礎訓練-北京理工大學 中國大學慕課答案
- MOOC 英語話中華-山東大學 中國大學慕課答案
- 河南省焦作市2023-2024學年七年級上學期期末語文試題
- 生物化學(華南農業(yè)大學)智慧樹知到期末考試答案2024年
- MOOC 技術經濟學-西安建筑科技大學 中國大學慕課答案
- 人教版一年級上冊數學專項練習-計算題50道含答案(綜合卷)
- 高水平行業(yè)特色型大學核心競爭力評價與培育研究的開題報告
評論
0/150
提交評論